初中数学

如图,将长方形ABCD沿着对角线BD折叠,使点C落在C′处,BC′交AD于点E.

(1)试判断△BDE的形状,并说明理由;
(2)若AB=4,AD=8,求△BDE的面积.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,四边形 ABCD 内接于 O BC O 的直径, AC BD 交于点 E P CB 延长线上一点,连接 PA ,且 PAB = ADB

(1)求证: PA O 的切线;

(2)若 AB = 6 tan ADB = 3 4 ,求 PB 长;

(3)在(2)的条件下,若 AD = CD ,求 ΔCDE 的面积.

来源:2018年湖北省鄂州市中考数学试卷
  • 更新:2021-05-22
  • 题型:未知
  • 难度:未知

如图:已知在△ABC中,AB=AC,D为BC边的中点,过点D作DE⊥AB,DF⊥AC,,垂足分别为E,F.

(1)求证:△BED≌△CFD;
(2)若∠A=90°,求证:四边形DFAE是正方形.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在矩形ABCD中,E、F分别是边AB、CD的中点,连接AF,CE.

(1)求证:△BEC≌△DFA;
(2)求证:四边形AECF是平行四边形.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在△ABC中,D、E分别是AB、AC的中点,BE=2DE,延长DE到点F,使得EF=BE,连接CF.

(1)求证:四边形BCFE是菱形;
(2)若CE=4,∠BCF=120°,求菱形BCFE的面积.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,已知在平行四边形ABCD中,E、F分别是边AD、BC上的点,且DE=BF,过E、F两点作直线,分别与CD、AB的延长线相交于点M、N,连接CE、AF.

求证:(1)四边形AFCE是平行四边形;
(2)△MEC≌△NFA.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

一个多边形,它的内角和比外角和的4倍多180°,求这个多边形的边数及内角和度数.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,E是矩形ABCD的边CD上的一点,BE交AC于点O,已知△OCE和△OBC的面积分别为2和8.

(1)求△OAB和四边形AOED的面积;
(2)若BE⊥AC,求BE的长.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,已知四边形ABCD和DEFG都是正方形,连接AE、CG.请猜想AE与CG有什么数量关系?并证明你的猜想.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知E为平行四边形ABCD外一点,AE⊥CE,BE⊥DE,求证:平行四边形ABCD是矩形.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在平行四边形ABCD中,AC、BD相交于点O,点E、F分别是OB、OD的中点.判断四边形AECF的形状并说明理由.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图所示,折叠长方形一边AD,点D落在BC边的点F处,已知BC=10厘米,AB=8厘米,求EC的长。
                      

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,已知点E,F分别是□ABCD的边BC,AD上的中点,且∠BAC=90°.

(1)求证:四边形AECF是菱形;
(2)若∠B=30°,BC=10,求菱形AECF面积.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,已知AB是⊙O的弦,CD是⊙O的直径,CD⊥AB,垂足为E,且点E是OD的中点,⊙O的切线BM与AO的延长线相交于点M,连接AC,CM.

(1)若AB=,求的长;(结果保留π)
(2)求证:四边形ABMC是菱形.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知:如图,平行四边形ABCD中,E、F分别为AB、CD上的点,且AE=CF,EF与BD交于点O.

求证:OE=OF.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

初中数学圆内接四边形的性质计算题