初中数学

(11·贺州)
如图,E、F是平行四边形ABCD对角线AC上的两点,BE∥DF.求证:BE=DF.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

(11·贺州)把一张矩形纸片ABCD按如图方式折叠,使顶点B和顶点D重合,
折痕为EF.若BF=4,FC=2,则∠DEF的度数是_   ▲  

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

(11·贺州)如图,在梯形ABCD中,AB∥CD,AB=3CD,对角线AC、BD交
于点O,中位线EF与AC、BD分别交于M、N两点,则图中阴影部分的面积是梯形ABCD
面积的

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,长方形ABCD(长方形的对边相等,每个角都是90°),AB=6cm,AD=2cm,动点P、Q分别从点A、C同时出发,点P以2厘米/ 秒的速度向终点B移动,点Q以1厘米/ 秒的速度向D移动,当有一点到达终点时,另一点也停止运动。设运动的时间为t ,问:
(1)当t=1秒时,四边形BCQP面积是多少?
(2)当t为何值时,点P和点Q距离是3cm?
(3)当t=     时, 以点P、Q、D为顶点的三角形是等腰三角形.(直接写出答案)

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

(11·佛山)阅读材料
我们经常通过认识一个事物的局部或其特殊类型,来逐步认识这个事物;
比如我们通过学习两类特殊的四边形,即平行四边形和梯形(继续学习它们的特殊类型如矩形、等腰梯形等)来逐步认识四边形;
我们对课本里特殊四边形的学习,一般先学习图形的定义,再探索发现其性质和判定方法,然后通过解决简单的问题巩固所学知识;
请解决以下问题:
如图,我们把满足AB=CD、CB=CD且AB≠BC的四边形ABCD叫做“筝形”;
(1)写出筝形的两个性质(定义除外);
(2)写出筝形的两个判定方法(定义除外),并选出一个进行证明;

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

(11·佛山)在矩形ABCD中,两条对角线AC、BD相交于点O,若AB=OB=4,则AD= 

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

(11·佛山)依次连接菱形的各边中点,得到的四边形是(              )

A.矩形 B.菱形 C.正方形 D.梯形
  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,在□ABCD中,AC、BD相交于点O,点E是AB的中点.若OE=3cm,则AD的长是       cm.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

(本题8分)已知锐角△ABC中,边BC长为12,高AD长为8
(1)如图,矩形EFGH的边GH在BC边上,其余两个顶点E、F分别在AB、AC边上,EF交AD于点K

①求的值
②设EH=x,矩形EFGH的面积为S,求S与x的函数关系式,并求S的最大值
(2)若ABAC,正方形PQMN的两个顶点在△ABC一边上,另两个顶点分别在△ABC的另两边上,直接写出正方形PQMN的边长.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

矩形、菱形、正方形都是平行四边形,但它们都是有特殊条件的平行四边形,正方形不仅是特殊的矩形,也是特殊的菱形.因此,我们可利用矩形、菱形的性质来研究正方形的有关问题.回答下列问题:
(1)将平行四边形、矩形、菱形、正方形填入它们的包含关系的下图中.

(2)要证明一个四边形是正方形,可先证明四边形是矩形,再证明这个矩形的_______相等;或者先证明四边形是菱形,在证明这个菱形有一个角是________ .
(3)某同学根据菱形面积计算公式推导出对角线长为a的正方形面积是S=0.5a2,对此结论,你认为是否正确?若正确,请说明理由;若不正确,请举出一个反例说明.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

在Rt△ABC中,∠C=90°,AC=3,BC=4,将△ABC绕边AC所在直线旋转一周得到圆锥,则该圆锥的侧面积是___________.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

小明遇到这样一个问题:“如图1,在边长为a(a>2)的正方形ABCD各边上分别截取AE=BF=CG=DH=1,当∠AFQ=∠BGM=∠CHN=∠DEP=45°时,求正方形MNPQ的面积.”
分析时,小明发现,分别延长QE,MF,NG,PH交FA,GB,HC,ED的延长线于 点R,S,T,W,可得△RQF,△SMG,△TNH,△WPE是四个全等的等腰直角三角形(如图2)
请回答:
(1)若将上述四个等腰直角三角形拼成一个正方形(无缝隙不重叠),则这个正方形的边长为_______
(2)求正方形MNPQ的面积.
(3)参考小明思 考问题的方法,解决问题:
如图3,在等边△ABC各边上分别截取AD=BE=CF,再分别过点D,E,F作BC,AC,AB的垂线,得到等边△RPQ.若S△RPQ=,则AD的长为_______.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图1,直线 l : y = 3 4 x + b x 轴交于点 A ( 4 , 0 ) ,与 y 轴交于点 B ,点 C 是线段 OA 上一动点 ( 0 < AC < 16 5 ) .以点 A 为圆心, AC 长为半径作 A x 轴于另一点 D ,交线段 AB 于点 E ,连接 OE 并延长交 A 于点 F

(1)求直线 l 的函数表达式和 tan BAO 的值;

(2)如图2,连接 CE ,当 CE = EF 时,

①求证: ΔOCE ΔOEA

②求点 E 的坐标;

(3)当点 C 在线段 OA 上运动时,求 OE EF 的最大值.

来源:2018年浙江省宁波市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

如图,D,E,F分别为△ABC三边的中点,则图中平行四边形的个数为 

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知矩形长和宽分别为4和2,是否存在另一个矩形,它的周长和面积分别是已知矩形的?若存在请计算这个矩形的两边长,若不存在请说明理由.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

初中数学圆内接四边形的性质试题