张大爷家有一块梯形形状的稻田(如图),已知:上底AD=400米,下底BC=600米,高h=300米,张大爷准备把这块稻田平均分给两个儿子(面积相等).(1)分割方法有无数种,请你帮助张大爷设计两种不同的分割方案,在图1、图2中分别画出来,并简单说明理由;(2)如果用竹篱笆将分给两个儿子的稻田隔开,问:分割线在什么位置时,所用篱笆长度最短?请在图3中画出来,并求出此时篱笆的最短长度.
如图,Rt△ABO的顶点A是双曲线y=与直线y=﹣x﹣(k+1)在第二象限的交点.AB⊥x轴于B,且S△ABO=. (1)求这两个函数的解析式; (2)求直线与双曲线的两个交点A、C的坐标和△AOC的面积.
将一条长为20cm的铁丝剪成两段,并以每一段铁丝的长度为周长做成一个正方形.要使这两个正方形的面积之和等于17cm2,那么这两个正方形的边长分别是多少?
已知:如图,D是△ABC的BC边上的中点,DE⊥AC,DF⊥AB,垂足分别是E、F,且BF=CE. (1)求证:△ABC是等腰三角形; (2)当∠A=90°时,试判断四边形AFDE是怎样的四边形,证明你的结论.
学校准备购买一批乒乓球桌.现有甲、乙两家商店卖价如下:甲商店:每张需要700元.乙商店:交1000元会员费后,每张需要600元.设学校需要乒乓球桌x张,在甲商店买和在乙商店买所需费用分别为y1、y2元. (1)分别写出y1、y2的函数解析式. (2)当学校添置多少张时,两种方案的费用相同? (3)若学校需要添置乒乓球桌20张,那么在那个商店买较省钱?说说你的理由.
某学校初二级甲、乙两班共有学生150人,他们的期末考试数学平均分为64.4分,若甲班学生平均分为72分,乙班学生平均分为57分,那么甲、乙两班各有学生多少人?