如图1为搭建在地面上的遮阳棚,图2、图3是遮阳棚支架的示意图.遮阳棚支架由相同的菱形和相同的等腰三角形构成,滑块 E , H 可分别沿等长的立柱 AB , DC 上下移动, AF = EF = FG = 1 m .
(1)若移动滑块使 AE = EF ,求 ∠ AFE 的度数和棚宽 BC 的长.
(2)当 ∠ AFE 由 60 ° 变为 74 ° 时,问棚宽 BC 是增加还是减少?增加或减少了多少?
(结果精确到 0 . 1 m ,参考数据: 3 ≈ 1 . 73 , sin 37 ° ≈ 0 . 60 , cos 37 ° ≈ 0 . 80 , tan 37 ° ≈ 0 . 75 )
解不等式组:.
(1)填空: ①= , ②= , ③(-3y)()= , ④ (2x﹣1)=2﹣x. (2)计算: ①(x+5y)(2x﹣y), ②
如图,在平面直角坐标系中,直线AB与x轴、y轴的正半轴分别交于点A,B,直线CD与x轴正半轴、y轴负半轴分别交于点D,C,AB与CD相交于点E,点A,B,C,D的坐标分别为(8,0)、(0,6)、(0,﹣3)、(4,0),点M是OB的中点,点P在直线AB上,过点P作PQ∥y轴,交直线CD于点Q,设点P的横坐标为m. (1)求直线AB,CD对应的函数关系式; (2)用含m的代数式表示PQ的长; (3)若以点M,O,P,Q为顶点的四边形是矩形,请直接写出相应的m的值.
如图,点E,F分别在正方形ABCD的边DA,DC延长线上,且AE﹣CF,连接BE,BF,过点E作EG∥BF,过点F作FG∥BE,EG,FG交于点G. (1)求证:△ABE≌△CBF; (2)求证:四边形BEGF是菱形; (3)若AD=3AE=3,求四边形BEGF的周长.
一个容器中有一个进水管和两个出水管,从某一时刻开始2min内只进水不出水,在随后的4min内开启了一个出水管,既进水又出水,每个出水管每分钟出水7.5L,每分钟的进水量和出水量保持不变,容器内的水量y(L)与时间x(min)之间的函数关系如图所示. (1)求a的值; (2)当2≤x≤6时,求y关于x的函数关系式; (3)若在6min之后,两个出水管均开启,进水管关闭,请在图中补全函数图象.