如图,正方形ABCD的长为1,点E是AD边上的动点且从点A沿AD向D运动,以BE为边,在BE的上方作正方形BEFG,为DC与EF的交点,请探索:
(1)连接CG,线段AE与CG是否相等? 请说明理由.
(2)设AE=x,CG=y,请确定y与x的函数关系式并说明自变量的取值范围.
(3)连接BH,当点E运动到边AD上的某一点时将有△BEH∽△BAE,请你指出这一点的位置,并说明理由.
如图,在△ABC中,∠ACB=90°,BC的垂直平分线DE交BC于D,交AB于E,F在DE上,并且AF=CE。
(1)求证:四边形ACEF是平行四边形;
(2)当∠B满足什么条件时,四边形ACEF是菱形?请回答并证明你的结论 。
如图,在直角梯形纸片中,,,,将纸片沿过点的直线折叠,使点落在边上的点处,折痕为.连接并展开纸片.
(1)求证:四边形是正方形;
(2)取线段的中点,连接,如果,试说明四边形是等腰梯形.
如图,在矩形ABCD中,AB=5,BC=7,点E是AD上一个动点,把△BAE沿BE向矩形内部折叠,当点A的对应点 恰好落在∠BCD 的平分线上时,C 的长为多少?
如图,以矩形OABC的顶点O为原点,OA所在的直线为x轴,OC所在的直线为y轴,建立平面直角坐标系.已知OA=3,OC=2,点E是AB的中点,在OA上取一点D,将△BDA沿BD翻折,使点A落在BC边上的点F处.
(1)直接写出点E、F的坐标;
(2)在y轴上是否存在点M,使得三角形MFE的周长最小?如果存在,求出周长的最小值;如果不存在,请说明理由.
(3)设顶点为F的抛物线交y轴正半轴于点P,且以点E、F、P为顶点的三角形是等腰三角形,求该抛物线的解析式;若顶点为F的抛物线交y轴负半轴于点P,且以点E、F、P为顶点的三角形是等腰三角形, 请直接写出点P的坐标.
如图,在矩形ABCD中,AD=18cm,AB=7cm,动点P、Q分别同时从A、C出发,点以3cm/s的速度向D移动,直到D为止,点Q以2cm/s的速度向B移动,点停止时,点也随之停止.
(1)、两点从出发开始几秒时,四边形PQCD的面积是矩形面积的?
(2)、从开始出发几秒时,cm?
在平面直角坐标系xOy中,矩形ABCO的面积为15,边OA比OC大2,E为BC的中点,以OE为直径的⊙ O′交x轴于D点,过点D作DF⊥AE于F.
(1)求OA,OC的长;
(2)求证:DF为⊙ O′的切线;
(3)小明在解答本题时,发现△AOE是等腰三角形.由此,他断定:“直线BC上一定存在除点E以外的点P,使△AOP也是等腰三角形,且点P一定在⊙O′外”.你同意他的看法吗?请充分说明理由.
如图,在△ABC中,D、E分别是AB、AC的中点,BE=2DE,过点C作CF∥BE交DE的延长线于F.
(1)求证:四边形BCFE是菱形;
(2)若CE=4,∠BCF=120°,求菱形BCFE的面积.
如图,在Rt△ABC中,∠ACB=90°,过点C的直线MN∥AB,D为AB边上一点,过点D作DE⊥BC,交直线MN于E,垂足为F,连接CD、BE.
(1)求证:CE=AD;
(2)当D在AB中点时,四边形BECD是什么特殊四边形?说明你的理由;
(3)若D为AB中点,则当∠A的大小满足什么条件时,四边形BECD是正方形?请说明你的理由.
如图,将长方形纸片ABCD沿着EF折叠,使得点C与点A重合.
(1)求证:AE=AF;
(2)若AB=3,BC=9,试求CF的长;
(3)在(2)的条件下,试求EF的长.
已知在长方形ABCD中,AB=4,BC=,O为BC上一点,BO=,如图所示,以BC所在直线为x轴,O为坐标原点建立平面直角坐标系,M为线段OC上的一点.
(1)若点M的坐标为(1,0),如图①,以OM为一边作等腰△OMP,使点P在长方形ABCD的一边上,则符合条件的等腰三角形有几个?请直接写出所有符合条件的点P的坐标;
(2)若将(1)中的点M的坐标改为(4,0),其它条件不变,如图②,那么符合条件的等腰三角形有几个?求出所有符合条件的点P的坐标;
(3)若将(1)中的点M的坐标改为(5,0),其它条件不变,如图③,请直接写出符合条件的等腰三角形有几个?请直接写出所有符合条件的点P的坐标.
如图,长方形ABCO的顶点A、C、O都在坐标轴上,点B的坐标为(8,3),M为AB的中点.
(1)试求点M的坐标和△AOM的周长;
(2)若P是OC上的一个动点,它以每秒1个单位长度的速度从点C出发沿射线CO方向匀速运动,设运动时间为t秒(t>0).
①若△POM的面积等于△AOM的面积的一半,试求t的值;
②是否存在某一时刻t,使△POM是等腰三角形?若存在,求出此时t的值;若不存在,试说明理由.
如图,把长方形纸片ABCD沿EF折叠后,使得点D与点B重合,点C落在点C′的位置上.
(1)△BEF是等腰三角形吗?试说明理由;
(2)若AB=8,DE=10,求CF的长度.
如图,在平行四边形ABCD中,E、F分别为边AB、CD的中点,连接DE、BF.
求证:△ADE≌△CBF.
四边形ABCD是正方形,E、F分别是DC和CB的延长线上的点,且DE=BF,连接AE、AF、EF.
(1)试判断△AEF的形状,并说明理由;
(2)填空:△ABF可以由△ADE绕旋转中心 点,按顺时针方向旋转 度得到;
(3)若BC=8,则四边形AECF的面积为 .(直接写结果)