如图,在Rt△ABC中,∠ACB=90°,过点C的直线MN∥AB,D为AB边上一点,过点D作DE⊥BC,交直线MN于E,垂足为F,连接CD、BE.(1)求证:CE=AD;(2)当D在AB中点时,四边形BECD是什么特殊四边形?说明你的理由;(3)若D为AB中点,则当∠A的大小满足什么条件时,四边形BECD是正方形?请说明你的理由.
已知数轴上有A、B、C三点,分别表示有理数-26,-10,10,动点P从A出发,以每秒1个单位的速度向终点C移动,设点P移动时间为t秒. (1)用含t的代数式表示P到点A和点C的距离:PA=________,PC=_____________ (2)当点P运动到B点时,点Q从A点出发,以每秒3个单位的速度向C点运动,Q点到达C点后,再立即以同样的速度返回点A,当点Q开始运动后,请用t的代数式表示P、Q两点间的距离。(友情提醒:注意考虑P、Q的位置)
(本题共8分)某原料仓库一天的原料进出记录如下表(运进用正数表示,运出用负数表示):
(1)这天仓库的原料比原来增加了还是减少了?请说明理由; (2)根据实际情况,现有两种方案: 方案一:运进每吨原料费用5元,运出每吨原料费用8元; 方案二:不管运进还是运出费用都是每吨原料6元; 从节约运费的角度考虑,选用哪一种方案比较合适. (3)在(2)的条件下,设运进原料共a吨,运出原料共b吨,a、b之间满足怎样的关系时,两种方案的 运费相同.
如图,O为直线AB上一点,OC平分∠BOD,OE⊥OC,垂足为O,∠AOE与∠DOE有什么关系,请说明理由.
(1) (2)
观察下列各式: (1)计算:的值; (2)计算:的值; (3)猜想:的值。