如图, 为 的直径, 为 上一点, 是弧 的中点, 与 、 分别交于点 、 .
(1)求证: ;
(2)求证: ;
(3)若 ,求 的值.
如图,在正方形网格中,每个小正方形的边长都是1, 是 的外接圆,点 , , 在网格线的交点上,则 的值是 .
如图,在每个小正方形的边长为1的网格中, 的顶点 , 均落在格点上,点 在网格线上,且 .
(Ⅰ)线段 的长等于 .
(Ⅱ)以 为直径的半圆与边 相交于点 ,若 , 分别为边 , 上的动点,当 取得最小值时,请用无刻度的直尺,在如图所示的网格中,画出点 , ,并简要说明点 , 的位置是如何找到的(不要求证明) .
已知:如图,点 是以 为直径的 上异于 、 的任意一点.连接 并延长至 ,使 .连接 、 .过点 作 于 .
(1)求证: 是 的切线;
(2)求证: ;
(3)若 半径确定,当 的面积最大时,求 的值.
如图,五边形 内接于 , 与 相切于点 ,交 延长线于点 .
(1)若 , ,求证: ;
(2)若 , , ,求 的长.
如图, 为 的直径, 为 上一点, 为 的中点.过点 作直线 的垂线,垂足为 ,连接 .
(1)求证: ;
(2) 与 有怎样的位置关系?请说明理由.
如图, 为 的直径,点 在 上.
(1)尺规作图:作 的平分线,与 交于点 ;连接 ,交 于点 (不写作法,只保留作图痕迹,且用黑色墨水笔将作图痕迹加黑);
(2)探究 与 的位置及数量关系,并证明你的结论.
如图, 是以 为直径的 的切线, 为切点, 平分 ,弦 交 于点 , .
(1)求证: 是等腰直角三角形;
(2)求证: ;
(3)求 的值.
如图, 与 相切于点 , 交 于点 , 的延长线交 于点 , 是 上不与 , 重合的点, .
(1)求 的大小;
(2)若 的半径为3,点 在 的延长线上,且 ,求证: 与 相切.
如图, 是 的直径, 为 上一点, 和过点 的切线互相垂直,垂足为 .
(1)求证: ;
(2)若 , ,求 的长.