如图,在锐角三角形 中, 是 边上的高,以 为直径的 交 于点 ,交 于点 ,过点 作 ,垂足为 ,交 于点 ,交 于点 ,连接 , , .
(1)求证: ;
(2)若 , , ,求 的长.
如图, 是 的弦, ,点 是 上的一个动点,且 ,若点 , 分别是 , 的中点,则图中阴影部分面积的最大值是 .
如图1,四边形 内接于 , 为直径,点 作 于点 ,连接 .
(1)求证: ;
(2)若 是 的切线, ,连接 ,如图2.
①请判断四边形 的形状,并说明理由;
②当 时,求 , 与 围成阴影部分的面积.
在一次数学探究活动中,李老师设计了一份活动单:
已知线段 ,使用作图工具作 ,尝试操作后思考: (1)这样的点 唯一吗? (2)点 的位置有什么特征?你有什么感悟? |
“追梦”学习小组通过操作、观察、讨论后汇报:点 的位置不唯一,它在以 为弦的圆弧上(点 、 除外), .小华同学画出了符合要求的一条圆弧(如图 .
(1)小华同学提出了下列问题,请你帮助解决.
①该弧所在圆的半径长为 ;
② 面积的最大值为 ;
(2)经过比对发现,小明同学所画的角的顶点不在小华所画的圆弧上,而在如图1所示的弓形内部,我们记为 ,请你根据图1证明 .
(3)请你运用所学知识,结合以上活动经验,解决问题:如图2,已知矩形 的边长 , ,点 在直线 的左侧,且 .
①线段 长的最小值为 ;
②若 ,则线段 长为 .
如图,在 中, , , , 是 上一点(点 与点 不重合).若在 的直角边上存在4个不同的点分别和点 、 成为直角三角形的三个顶点,则 长的取值范围是 .
如图1, 是 的直径,点 是 上一动点,且不与 , 两点重合, 的平分线交 于点 ,过点 作 ,交 的延长线于点 .
(1)求证: 是 的切线;
(2)求证: ;
(3)如图2,原有条件不变,连接 , ,延长 至点 , 的平分线交 的延长线于点 , 的平分线交 的平分线于点 .求证:无论点 如何运动,总有 .
如图,在 中, ,点 在 边上,过 , , 三点的 交 边于另一点 ,且 是 的中点, 是 的一条直径,连接 并延长交 边于 点.
(1)求证:四边形 为平行四边形;
(2)当 时,求 的值.
如图, 、 是 的切线, 、 是切点, 是 的直径,连接 ,交 于点 ,交 于点 .
(1)求证: ;
(2)若 恰好是 的中点,且四边形 的面积是 ,求阴影部分的面积;
(3)若 ,且 ,求切线 的长.
如图,在 中, ,以 为直径的 与 相交于点 , ,垂足为 .
(1)求证: 是 的切线;
(2)若弦 垂直于 ,垂足为 , , ,求 的半径;
(3)在(2)的条件下,当 时,求线段 的长.
已知,如图①,若 是 中 的内角平分线,通过证明可得 ,同理,若 是 中 的外角平分线,通过探究也有类似的性质.请你根据上述信息,求解如下问题:
如图②,在 中, , , 是 的内角平分线,则 的 边上的中线长 的取值范围是 .
如图,已知 内接于 , 是 的直径, 的平分线交 于点 ,交 于点 ,连接 ,作 ,交 的延长线于点 .
(1)求证: 是 的切线;
(2)若 , ,求 的半径和 的长.
如图,在 中, 为 的直径, 为 的弦,点 是 的中点,过点 作 的垂线,交 于点 ,交 于点 ,分别连接 , .
(1) 与 的数量关系是 ;
(2)求证: ;
(3)若 , ,求阴影部分图形的面积.
如图,在 中, , 是 上的一点,以 为直径的 与 相切于点 ,连接 , .
(1)求证: 平分 ;
(2)若 ,求 的值.
如图, 内接于 , 是 的直径 的延长线上一点, .过圆心 作 的平行线交 的延长线于点 .
(1)求证: 是 的切线;
(2)若 , ,求 的半径及 的值.