已知:如图,、是的两条弦,且,是延长线上一点,联结并延长交于点,联结并延长交于点.
(1)求证:;
(2)如果,求证:四边形是菱形.
如图,在 中, 为 的直径, 为 上一点, 是 的中点,过点 作 的垂线,交 的延长线于点 ,连接 .
(1)求证: 是 的切线;
(2)若 , ,求 的长.
如图,已知 的半径为5, 是 的内接三角形, ,.过点 作 的切线 ,过点 作 ,垂足为 .
(1)求证:
(2)求线段 的长.
如图, 是 的直径,弦 于点 ,点 是 上一点,且 ,连接 , , 交 于点 .
(1)若 , ,求 的半径;
(2)求证: 为等腰三角形;
(3)连接 并延长,交 的延长线于点 ,过点 作 的切线,交 的延长线于点 .求证: .
如图,在中,,点为的中点,延长到点,使,交于点.
(1)求证:是的切线;
(2)若,求弦的长.
(年贵州省毕节)如图,以△ABC的BC边上一点O为圆心的圆,经过A,B两点,且与BC边交于点E,D为BE的下半圆弧的中点,连接AD交BC于F,AC=FC.
(1)求证:AC是⊙O的切线;
(2)已知圆的半径R=5,EF=3,求DF的长.
如图,是的一条弦,是的中点,过点作于点,过点作的切线交的延长线于点.
(1)求证:;
(2)若,,求的半径.
如图, 是以 为直径的 的切线, 为切点, 平分 ,弦 交 于点 , .
(1)求证: 是等腰直角三角形;
(2)求证: ;
(3)求 的值.
操作题:如图,△ABC内接于⊙O,AB=AC,P是⊙O上一点.
(1)请你只用无刻度的直尺,分别画出图①和图②中∠P的平分线;
(2)结合图②,说明你这样画的理由.
如图,已知 是 的直径, 是 所对的圆周角, .
(1)求 的度数;
(2)过点 作 ,垂足为 , 的延长线交 于点 .若 ,求 的长.
如图, 为 的直径,弦 ,垂足为点 ,直线 与 的延长线交于点 ,且 .
(1)求证:直线 是 的切线.
(2)若 , ,求线段 的长.
如图,已知 、 是 上两点, 外角的平分线交 于另一点 , 交 的延长线于 .
(1)求证: 是 的切线;
(2) 为 的中点, 为 上一点, 交 于 ,若 , , ,求 的半径.
如图, 是 的外接圆,直线 与 相切于点 , ,连接 交 于点 .
(1)求证: 平分 ;
(2)若 的平分线 交 于点 ,且 , ,求 的长.
如图,圆 中两条互相垂直的弦 , 交于点 .
(1) 是 的中点, , ,求圆 的半径长;
(2)点 在 上,且 ,求证: .
问题提出
(1)如图①,在中,,,则的外接圆半径的值为 .
问题探究
(2)如图②,的半径为13,弦,是的中点,是上一动点,求的最大值.
问题解决
(3)如图③所示,、、是某新区的三条规划路,其中,,,所对的圆心角为,新区管委会想在路边建物资总站点,在,路边分别建物资分站点、,也就是,分别在、线段和上选取点、、.由于总站工作人员每天都要将物资在各物资站点间按的路径进行运输,因此,要在各物资站点之间规划道路、和.为了快捷、环保和节约成本.要使得线段、、之和最短,试求的最小值.(各物资站点与所在道路之间的距离、路宽均忽略不计)