已知的直径,弦与弦交于点.且,垂足为点.
(1)如图1,如果,求弦的长;
(2)如图2,如果为弦的中点,求的余切值;
(3)联结、、,如果是的内接正边形的一边,是的内接正边形的一边,求的面积.
设抛物线()与x轴的交点为A(, 0),B(,0),且,其中,点P(a,b)为抛物线上一动点.
(1)求抛物线的解析式;
(2)连接AC,过P点做直线PE∥AC交x轴于点E,交y轴于点E(O,t),当a取何值时t有最大值,最大值是多少?
(3)判断在(2)的条件中是否存在一点P,使以点A、C、P、E为顶点的四边形为平行四边形.若不存在试说明理由;若存在,试求出点P的坐标.
如图,已知 , 为 的两条直径,连接 , , 于点 ,点 是半径 的中点,连接 .
(1)设 的半径为1,若 ,求线段 的长.
(2)连接 , ,设 与 交于点 ,
①求证: .
②若 ,求 的度数.
(本题8分)已知锐角△ABC中,边BC长为12,高AD长为8
(1)如图,矩形EFGH的边GH在BC边上,其余两个顶点E、F分别在AB、AC边上,EF交AD于点K
①求的值
②设EH=x,矩形EFGH的面积为S,求S与x的函数关系式,并求S的最大值
(2)若ABAC,正方形PQMN的两个顶点在△ABC一边上,另两个顶点分别在△ABC的另两边上,直接写出正方形PQMN的边长.
问题提出:
(1)如图1,已知,试确定一点,使得以,,,为顶点的四边形为平行四边形,请画出这个平行四边形;
问题探究:
(2)如图2,在矩形中,,,若要在该矩形中作出一个面积最大的,且使,求满足条件的点到点的距离;
问题解决:
(3)如图3,有一座塔,按规定,要以塔为对称中心,建一个面积尽可能大的形状为平行四边形的景区.根据实际情况,要求顶点是定点,点到塔的距离为50米,,那么,是否可以建一个满足要求的面积最大的平行四边形景区?若可以,求出满足要求的平行四边形的最大面积;若不可以,请说明理由.(塔的占地面积忽略不计)
在Rt△ABC中,∠A=90°,AC=AB=4, D,E分别是AB,AC的中点.若等腰Rt△绕点A逆时针旋转,得到等腰Rt△,设旋转角为,记直线与的交点为P.
(1)如图1,当时,线段的长等于 ,线段的长等于 ;(直接填写结果)
(2)如图2,当时,求证:,且;
(3)①设BC的中点为M,则线段PM的长为 ;②点P到AB所在直线的距离的最大值为 .(直接填写结果)
如图,在 中, 是直径, 是弦, ,垂足为 ,过点 的 的切线与 延长线交于点 ,连接 .
(1)求证: 为 的切线;
(2)若 半径为3, ,求 .
问题提出
(1)如图①,在中,,,则的外接圆半径的值为 .
问题探究
(2)如图②,的半径为13,弦,是的中点,是上一动点,求的最大值.
问题解决
(3)如图③所示,、、是某新区的三条规划路,其中,,,所对的圆心角为,新区管委会想在路边建物资总站点,在,路边分别建物资分站点、,也就是,分别在、线段和上选取点、、.由于总站工作人员每天都要将物资在各物资站点间按的路径进行运输,因此,要在各物资站点之间规划道路、和.为了快捷、环保和节约成本.要使得线段、、之和最短,试求的最小值.(各物资站点与所在道路之间的距离、路宽均忽略不计)
在 中, , 是边 上一动点,连接 ,将 绕点 逆时针旋转至 的位置,使得 .
(1)如图1,当 时,连接 ,交 于点 .若 平分 , ,求 的长;
(2)如图2,连接 ,取 的中点 ,连接 .猜想 与 存在的数量关系,并证明你的猜想;
(3)如图3,在(2)的条件下,连接 , .若 ,当 , 时,请直接写出 的值.
在扇形 中,半径 ,点 在 上,连结 ,将 沿 折叠得到△ .
(1)如图1,若 ,且 与 所在的圆相切于点 .
①求 的度数.
②求 的长.
(2)如图2, 与 相交于点 ,若点 为 的中点,且 ,求 的长.
如图, 是 的直径, , 是 的弦, 为 的中点, 与 交于点 ,过点 作 ,交 的延长线于点 ,且 平分 .
(1)求证: 是 的切线;
(2)求证: ;
(3)若 , ,求 的长.
如图, 的半径为1,点 是 的直径 延长线上的一点, 为 上的一点, , .
(1)求证:直线 是 的切线;
(2)求 的面积;
(3)点 在 上运动(不与 、 重合),过点 作 的垂线,与 的延长线交于点 .
①当点 运动到与点 关于直径 对称时,求 的长;
②当点 运动到什么位置时, 取到最大值,并求出此时 的长.
如图, 是半圆的直径, 为半圆的中点, , ,反比例函数 的图象经过点 ,则 的值为 .
如图, 是 的内接三角形,点 在 上,点 在弦 上 不与 重合),且四边形 为菱形.
(1)求证: ;
(2)求证: ;
(3)已知 的半径为3.
①若 ,求 的长;
②当 为何值时, 的值最大?