在平面直角坐标系 xOy 中,点 P 的坐标为 ( x 1 , y 1 ) ,点 Q 的坐标为 ( x 2 , y 2 ) ,且 x 1 ≠ x 2 , y 1 ≠ y 2 ,若 P , Q 为某个矩形的两个顶点,且该矩形的边均与某条坐标轴垂直,则称该矩形为点 P , Q 的"相关矩形",如图为点 P , Q 的"相关矩形"示意图.
(1)已知点 A 的坐标为 ( 1 , 0 ) ,
①若点 B 的坐标为 ( 3 , 1 ) ,求点 A , B 的"相关矩形"的面积;
②点 C 在直线 x = 3 上,若点 A , C 的"相关矩形"为正方形,求直线 AC 的表达式;
(2) ⊙ O 的半径为 2 ,点 M 的坐标为 ( m , 3 ) ,若在 ⊙ O 上存在一点 N ,使得点 M , N 的"相关矩形"为正方形,求 m 的取值范围.
如图,每个小正方形的边长为1个单位,每个小方格的顶点叫格点. (1)画出△ABC向右平移4个单位后得到的△A1B1C1; (2)画出△ABC的AB边上的中线CD,并求△BCD的面积.
解不等式组,并写出它的所有整数解.
先化简,再求值:,其中,.
如图,在同一直角坐标系中,正比例函数的图象可以看作是:将轴所在的直线绕着原点O逆时针旋转α度角后的图形.若它与反比例函数的图象分别交于第一、三象限的点B、D,已知点A(-m,0)、C(m,0). (1)直接判断并填写:不论α取何值,四边形ABCD的形状一定是 ; (2)①当点B为(p,1)时,四边形ABCD是矩形,试求p和m有值; ②观察猜想:对①中的m值,直接写出能使四边形ABCD为矩形的点B坐标. (3)试探究:四边形ABCD能不能是菱形?若能, 直接写出B点的坐标, 若不能,说明理由.
如图,在正方形ABCD中,点M是BC边上的任一点,连接AM并将线段AM绕M顺时针旋转90°得到线段MN,在CD边上取点P使CP=BM,连接NP,BP. (1)求证:四边形BMNP是平行四边形; (2)线段MN与CD交于点Q,连接AQ,若△MCQ∽△AMQ,则BM与MC存在怎样的数量关系?请说明理由.