初中数学

如图,矩形 ABCD 中,点 P 为对角线 AC 所在直线上的一个动点,连接 PD ,过点 P PE PD ,交直线 AB 于点 E ,过点 P MN AB ,交直线 CD 于点 M ,交直线 AB 于点 N AB = 4 3 AD = 4

(1)如图1,①当点 P 在线段 AC 上时, PDM EPN 的数量关系为: PDM    EPN

DP PE 的值是   

(2)如图2,当点 P CA 延长线上时,(1)中的结论②是否成立?若成立,请证明;若不成立,说明理由;

(3)如图3,以线段 PD PE 为邻边作矩形 PEFD .设 PM 的长为 x ,矩形 PEFD 的面积为 y .请直接写出 y x 之间的函数关系式及 y 的最小值.

来源:2020年内蒙古赤峰市中考数学试卷
  • 更新:2021-01-17
  • 题型:未知
  • 难度:未知

【了解概念】

有一组对角互余的凸四边形称为对余四边形,连接这两个角的顶点的线段称为对余线.

【理解运用】

(1)如图①,对余四边形 ABCD 中, AB = 5 BC = 6 CD = 4 ,连接 AC .若 AC = AB ,求 sin CAD 的值;

(2)如图②,凸四边形 ABCD 中, AD = BD AD BD ,当 2 C D 2 + C B 2 = C A 2 时,判断四边形 ABCD 是否为对余四边形.证明你的结论;

【拓展提升】

(3)在平面直角坐标系中,点 A ( - 1 , 0 ) B ( 3 , 0 ) C ( 1 , 2 ) ,四边形 ABCD 是对余四边形,点 E 在对余线 BD 上,且位于 ΔABC 内部, AEC = 90 ° + ABC .设 AE BE = u ,点 D 的纵坐标为 t ,请直接写出 u 关于 t 的函数解析式.

来源:2020年江苏省南通市中考数学试卷
  • 更新:2021-01-04
  • 题型:未知
  • 难度:未知

(1)如图1,点为矩形对角线上一点,过点,分别交于点.若的面积为的面积为,则   

(2)如图2,点内一点(点不在上),点分别为各边的中点.设四边形的面积为,四边形的面积为(其中,求的面积(用含的代数式表示);

(3)如图3,点内一点(点不在上),过点,与各边分别相交于点.设四边形的面积为,四边形的面积为(其中,求的面积(用含的代数式表示);

(4)如图4,点四等分.请你在圆内选一点(点不在上),设围成的封闭图形的面积为围成的封闭图形的面积为的面积为的面积为,根据你选的点的位置,直接写出一个含有的等式(写出一种情况即可).

来源:2020年江苏省连云港市中考数学试卷
  • 更新:2020-12-31
  • 题型:未知
  • 难度:未知

定义:若四边形有一组对角互补,一组邻边相等,且相等邻边的夹角为直角,像这样的图形称为"直角等邻对补"四边形,简称"直等补"四边形.

根据以上定义,解决下列问题:

(1)如图1,正方形 ABCD 中, E CD 上的点,将 ΔBCE B 点旋转,使 BC BA 重合,此时点 E 的对应点 F DA 的延长线上,则四边形 BEDF 为"直等补"四边形,为什么?

(2)如图2,已知四边形 ABCD 是"直等补"四边形, AB = BC = 5 CD = 1 AD > AB ,点 B 到直线 AD 的距离为 BE

①求 BE 的长;

②若 M N 分别是 AB AD 边上的动点,求 ΔMNC 周长的最小值.

来源:2020年湖南省益阳市中考数学试卷
  • 更新:2020-12-31
  • 题型:未知
  • 难度:未知

如图1,平面直角坐标系 xOy 中,等腰 ΔABC 的底边 BC x 轴上, BC = 8 ,顶点 A y 的正半轴上, OA = 2 ,一动点 E ( 3 , 0 ) 出发,以每秒1个单位的速度沿 CB 向左运动,到达 OB 的中点停止.另一动点 F 从点 C 出发,以相同的速度沿 CB 向左运动,到达点 O 停止.已知点 E F 同时出发,以 EF 为边作正方形 EFGH ,使正方形 EFGH ΔABC BC 的同侧,设运动的时间为 t ( t 0 )

(1)当点 H 落在 AC 边上时,求 t 的值;

(2)设正方形 EFGH ΔABC 重叠面积为 S ,请问是否存在 t 值,使得 S = 91 36 ?若存在,求出 t 值;若不存在,请说明理由;

(3)如图2,取 AC 的中点 D ,连结 OD ,当点 E F 开始运动时,点 M 从点 O 出发,以每秒 2 5 个单位的速度沿 OD - DC - CD - DO 运动,到达点 O 停止运动.请问在点 E 的整个运动过程中,点 M 可能在正方形 EFGH 内(含边界)吗?如果可能,求出点 M 在正方形 EFGH 内(含边界)的时长;若不可能,请说明理由.

来源:2020年湖南省衡阳市中考数学试卷
  • 更新:2020-12-31
  • 题型:未知
  • 难度:未知

如图,四边形是正方形,点为对角线的中点.

(1)问题解决:如图①,连接,分别取的中点,连接,则的数量关系是   ,位置关系是  

(2)问题探究:如图②,△是将图①中的绕点按顺时针方向旋转得到的三角形,连接,点分别为的中点,连接.判断的形状,并证明你的结论;

(3)拓展延伸:如图③,△是将图①中的绕点按逆时针方向旋转得到的三角形,连接,点分别为的中点,连接.若正方形的边长为1,求的面积.

来源:2020年贵州省贵阳市中考数学试卷
  • 更新:2020-12-31
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,矩形的边长是的根,连接,并过点,垂足为,动点点以每秒2个单位长度的速度沿方向匀速运动到点为止;点沿线段以每秒个单位长度的速度由点向点匀速运动,到点为止,点与点同时出发,设运动时间为

(1)线段  

(2)连接,求的面积与运动时间的函数关系式;

(3)在整个运动过程中,当是以为腰的等腰三角形时,直接写出点的坐标.

来源:2020年黑龙江省七台河市中考数学试卷(农垦、森工用)
  • 更新:2021-01-01
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,四边形的边轴上,轴上.为坐标原点,,线段的长分别是方程的两个根

(1)求点的坐标;

(2)上一点,上一点,,将翻折,使点落在上的点处,双曲线的一个分支过点.求的值;

(3)在(2)的条件下,为坐标轴上一点,在平面内是否存在点,使以为顶点四边形为矩形?若存在,请直接写出点的坐标;若不存在,请说明理由.

来源:2020年黑龙江省牡丹江市、鸡西市朝鲜族学校中考数学试卷
  • 更新:2021-01-01
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,矩形的边.若不改变矩形的形状和大小,当矩形顶点轴的正半轴上左右移动时,矩形的另一个顶点始终在轴的正半轴上随之上下移动.

(1)当时,求点的坐标;

(2)设的中点为,连接,当四边形的面积为时,求的长;

(3)当点移动到某一位置时,点到点的距离有最大值,请直接写出最大值,并求此时的值.

来源:2019年湖南省益阳市中考数学试卷
  • 更新:2021-01-01
  • 题型:未知
  • 难度:未知

如图一,在射线的一侧以为一条边作矩形,点是线段上一动点(不与点重合),连结,过点的垂线交射线于点,连接

(1)求的大小;

(2)问题探究:动点在运动的过程中,

①是否能使为等腰三角形,如果能,求出线段的长度;如果不能,请说明理由.

的大小是否改变?若不改变,请求出的大小;若改变,请说明理由.

(3)问题解决:

如图二,当动点运动到的中点时,的交点为的中点为,求线段的长度.

来源:2019年湖南省湘潭市中考数学试卷
  • 更新:2021-01-01
  • 题型:未知
  • 难度:未知

如图,在等边中,,动点从点出发以的速度沿匀速运动.动点同时从点出发以同样的速度沿的延长线方向匀速运动,当点到达点时,点同时停止运动.设运动时间为.过点,连接边于.以为边作平行四边形

(1)当为何值时,为直角三角形;

(2)是否存在某一时刻,使点的平分线上?若存在,求出的值,若不存在,请说明理由;

(3)求的长;

(4)取线段的中点,连接,将沿直线翻折,得△,连接,当为何值时,的值最小?并求出最小值.

来源:2019年湖南省衡阳市中考数学试卷
  • 更新:2021-01-01
  • 题型:未知
  • 难度:未知

已知:如图,在四边形中,垂直平分 .点从点出发,沿方向匀速运动,速度为;同时,点从点出发,沿方向匀速运动,速度为;当一个点停止运动,另一个点也停止运动.过点,交于点,过点,分别交于点.连接.设运动时间为,解答下列问题:

(1)当为何值时,点的平分线上?

(2)设四边形的面积为,求的函数关系式;

(3)在运动过程中,是否存在某一时刻,使四边形的面积最大?若存在,求出的值;若不存在,请说明理由;

(4)连接,在运动过程中,是否存在某一时刻,使?若存在,求出的值;若不存在,请说明理由.

来源:2019年山东省青岛市中考数学试卷
  • 更新:2021-01-01
  • 题型:未知
  • 难度:未知

如图1,在矩形中,边上一点,连接,将矩形沿折叠,顶点恰好落在边上点处,延长的延长线于点

(1)求线段的长;

(2)如图2,分别是线段上的动点(与端点不重合),且,设

①写出关于的函数解析式,并求出的最小值;

②是否存在这样的点,使是等腰三角形?若存在,请求出的值;若不存在,请说明理由.

来源:2019年山东省济宁市中考数学试卷
  • 更新:2021-01-01
  • 题型:未知
  • 难度:未知

如图,在以点为中心的正方形中,,连接,动点从点出发沿以每秒1个单位长度的速度匀速运动,到达点停止.在运动过程中,的外接圆交于点,连接于点,连接,将沿翻折,得到

(1)求证:是等腰直角三角形;

(2)当点恰好落在线段上时,求的长;

(3)设点运动的时间为秒,的面积为,求关于时间的关系式.

来源:2019年四川省绵阳市中考数学试卷
  • 更新:2021-01-02
  • 题型:未知
  • 难度:未知

如图,在平行四边形中,点的中点,点边上的点,,平行四边形的面积为,由三点确定的圆的周长为

(1)若的面积为30,直接写出的值;

(2)求证:平分

(3)若,求的值.

来源:2018年云南省中考数学试卷
  • 更新:2021-01-02
  • 题型:未知
  • 难度:未知

初中数学四边形综合题解答题