如图,点 在矩形 的对角线 上,且不与点 , 重合,过点 分别作边 , 的平行线,交两组对边于点 , 和 , .
(1)求证: ;
(2)证明四边形 和四边形 都是矩形,并直接写出它们面积之间的关系.
如图,已知 的直径 ,弦 , 的平分线交 于点 ,过点 作 交 的延长线于点 .
(1)求证: 是 的切线.
(2)求 的长.
四边形 的对角线交于点 ,有 , ,以 为直径的半圆过点 ,圆心为 .
(1)利用图1,求证:四边形 是菱形.
(2)如图2,若 的延长线与半圆相切于点 ,已知直径 .
①连接 ,求 的面积.
②求弧 的长.
我们定义:有一组邻角相等的凸四边形叫做“等邻角四边形”
(1)概念理解:
请你根据上述定义举一个等邻角四边形的例子;
(2)问题探究:
如图1,在等邻角四边形 中, , , 的中垂线恰好交于 边上一点 ,连接 , ,试探究 与 的数量关系,并说明理由;
(3)应用拓展:
如图2,在 与 中, , , ,将 绕着点 顺时针旋转角 得到 △ (如图 ,当凸四边形 为等邻角四边形时,求出它的面积.
已知 中, .
(1)请在图1中作出 边上的中线(保留作图痕迹,不写作法);
(2)如图2,设 边上的中线为 ,求证: .
如图,已知 , 是 的直径,过点 作 的切线交 的延长线于点 , 的弦 交 于点 ,且 .
(1)求证: ;
(2)连接 交 于点 ,过点 作 于点 ,若 , ,求 的长.
如图,在 中, , , ,以点 为原点建立平面直角坐标系,使 在 轴正半轴上,点 是 边上的一个动点, 交 于 , 于 , 于 .以下结论:
① ;
②当 为 的中点时, ;
③点 的坐标为 ;
④将 沿 所在的直线翻折到原来的平面,点 的对应点 的坐标为 ;
⑤矩形 的最大面积为3.在这些结论中正确的有 (只填序号)
如图1,在四边形 中, , , ,垂足分别为 , , , ,点 , , 分别为 , , 的中点,连接 , , .
(1)如图2,当 , , 时,求 的值;
(2)若 , ,则可求出图中哪些线段的长?写出解答过程;
(3)连接 , , , .试证明 与 全等;
(4)在(3)的条件下,图中还有哪些其它的全等三角形?请直接写出.
正方形 的边长为1,点 是 边上的一个动点(与 , 不重合),以 为顶点在 所在直线的上方作 .
(1)当 经过点 时,
①请直接填空: (可能,不可能)过 点;(图1仅供分析)
②如图2,在 上截取 ,过 点作 垂直于直线 ,垂足为点 ,作 于 ,求证:四边形 为正方形.
(2)当 不过点 时,设 交边 于 ,且 .在 上存在点 ,过 点作 垂直于直线 ,垂足为点 ,使得 ,连接 ,求四边形 的最大面积.
如图,在四边形 中, , , , , ,将 绕点 顺时针方向旋转后得△ ,当 恰好经过点 时,△ 为等腰三角形,则
A. B. C. D.
如图,在四边形 中, , , 的平分线 交 于点 , ,点 恰好为 的中点,若 , ,则
A.1B.2C.3D.4
在四边形 中, , , , .以 为腰作等腰 ,使 ,过点 作 交直线 于点 .请画出图形,并直接写出 的长.
如图,方格纸中每个小正方形的边长均为1,线段 的两个端点均在小正方形的顶点上.
(1)在图中画出以线段 为一边的矩形 (不是正方形),且点 和点 均在小正方形的顶点上;
(2)在图中画出以线段 为一腰,底边长为 的等腰三角形 ,点 在小正方形的顶点上,连接 ,请直接写出线段 的长.
如图,平行四边形纸片 的边 , 的长分别是 和 ,将其四个角向内对折后,点 与点 重合于点 ,点 与点 重合于点 .四条折痕围成一个“信封四边形” ,其顶点分别在平行四边形 的四条边上,则 .