在 中, , 是边 上一动点,连接 ,将 绕点 逆时针旋转至 的位置,使得 .
(1)如图1,当 时,连接 ,交 于点 .若 平分 , ,求 的长;
(2)如图2,连接 ,取 的中点 ,连接 .猜想 与 存在的数量关系,并证明你的猜想;
(3)如图3,在(2)的条件下,连接 , .若 ,当 , 时,请直接写出 的值.
如图,在平面直角坐标系中,菱形 的顶点 在第二象限,其余顶点都在第一象限, 轴, , .过点 作 ,垂足为 , .反比例函数 的图象经过点 ,与边 交于点 ,连接 , , .若 ,则 的值为
A. |
|
B. |
|
C. |
7 |
D. |
|
如图是一个由5张纸片拼成的平行四边形 ,相邻纸片之间互不重叠也无缝隙,其中两张等腰直角三角形纸片的面积都为 ,另两张直角三角形纸片的面积都为 ,中间一张矩形纸片 的面积为 , 与 相交于点 .当 , , , 的面积相等时,下列结论一定成立的是
A. |
|
B. |
|
C. |
|
D. |
|
如图,在 中, , ,点 在 上,且 ,点 是 上的动点,连结 ,点 , 分别是 和 的中点,连结 , ,当 时,线段 长为
A. |
|
B. |
|
C. |
|
D. |
4 |
如图,在菱形 中, , ,过菱形 的对称中心 分别作边 , 的垂线,交各边于点 , , , ,则四边形 的周长为
A. |
|
B. |
|
C. |
|
D. |
|
某数学兴趣小组在数学课外活动中,对多边形内两条互相垂直的线段做了如下探究:
【观察与猜想】
(1)如图1,在正方形 中,点 , 分别是 , 上的两点,连接 , , ,则 的值为 ;
(2)如图2,在矩形 中, , ,点 是 上的一点,连接 , ,且 ,则 的值为 ;
【类比探究】
(3)如图3,在四边形 中, ,点 为 上一点,连接 ,过点 作 的垂线交 的延长线于点 ,交 的延长线于点 ,求证: ;
【拓展延伸】
(4)如图4,在 中, , , ,将 沿 翻折,点 落在点 处得 ,点 , 分别在边 , 上,连接 , , .
①求 的值;
②连接 ,若 ,写出 的长度.
问题提出
(1)如图1,在 中, , , , 是 的中点,点 在 上,且 ,求四边形 的面积.(结果保留根号)
问题解决
(2)某市进行河滩治理,优化美化人居生态环境.如图2所示,现规划在河畔的一处滩地上规划一个五边形河畔公园 .按设计要求,要在五边形河畔公园 内挖一个四边形人工湖 ,使点 、 、 、 分别在边 、 、 、 上,且满足 , .已知五边形 中, , , , , .为满足人工湖周边各功能场所及绿化用地需要,想让人工湖面积尽可能小.请问,是否存在符合设计要求的面积最小的四边形人工湖 ?若存在,求四边形 面积的最小值及这时点 到点 的距离;若不存在,请说明理由.
如图,在 中, , .连接 ,过点 作 ,交 的延长线于点 ,连接 ,交 于点 .若 ,则四边形 的面积为
A. |
|
B. |
|
C. |
6 |
D. |
|
如图,四边形 是平行四边形, 且分别交对角线 于点 , .
(1)求证: ;
(2)当四边形 分别是矩形和菱形时,请分别说出四边形 的形状.(无需说明理由)
如图, 的对角线 , 相交于点 , 是等边三角形, .
(1)求证: 是矩形;
(2)求 的长.
如图1,在 中, , 是 边上的一点, 为 的中点,过点 作 的平行线交 的延长线于 ,且 ,连接 .
(1)求证: ;
(2)在图1中 上取一点 ,使 ,作 关于边 的对称点 ,连接 、 、 、 、 得图2.
①求证: ;
②设 与 相交于点 ,求证: , .
如图,在 中, ,对角线 , 经过点 , ,与 交于点 ,连接 并延长与 交于点 ,与 的延长线交于点 , .
(1)求证: 是 的切线;
(2)若 ,求 的长(结果保留 .