如图,在圆 中,弦 等于弦 ,且相交于点 ,其中 、 为 、 中点.
(1)证明: ;
(2)连接 、 、 ,若 ,证明:四边形 为矩形.
如图,点 是 的中点,四边形 是平行四边形.
(1)求证:四边形 是平行四边形;
(2)如果 ,求证:四边形 是矩形.
如图,等腰 中,顶角 ,用尺规按①到④的步骤操作:
①以 为圆心, 为半径画圆;
②在 上任取一点 (不与点 , 重合),连接 ;
③作 的垂直平分线与 交于 , ;
④作 的垂直平分线与 交于 , .
结论Ⅰ:顺次连接 , , , 四点必能得到矩形;
结论Ⅱ: 上只有唯一的点 ,使得 .
对于结论Ⅰ和Ⅱ,下列判断正确的是
A. |
Ⅰ和Ⅱ都对 |
B. |
Ⅰ和Ⅱ都不对 |
C. |
Ⅰ不对Ⅱ对 |
D. |
Ⅰ对Ⅱ不对 |
如图,在 中,对角线 , , , 为 的中点, 为边 上一点,直线 交 于点 ,连结 , .下列结论不成立的是
A.四边形 为平行四边形
B.若 ,则四边形 为矩形
C.若 ,则四边形 为菱形
D.若 ,则四边形 为正方形
如图,在 中, 为 的中点,连接 并延长交 的延长线于点 ,连接 , ,若 ,求证:四边形 是矩形.
如图,在正方形 中,点 是 上一动点(不与 、 重合),对角线 、 相交于点 ,过点 分别作 、 的垂线,分别交 、 于点 、 ,交 、 于点 、 .下列结论:
① ;
② ;
③ ;
④ ;
⑤点 在 、 两点的连线上.
其中正确的是
A.①②③④B.①②③⑤C.①②③④⑤D.③④⑤
下列是关于某个四边形的三个结论:①它的对角线相等;②它是一个正方形;③它是一个矩形.下列推理过程正确的是
A.由②推出③,由③推出①B.由①推出②,由②推出③
C.由③推出①,由①推出②D.由①推出③,由③推出②
设 , , , 是反比例函数 图象上的任意四点,现有以下结论:
①四边形 可以是平行四边形;
②四边形 可以是菱形;
③四边形 不可能是矩形;
④四边形 不可能是正方形.
其中正确的是 .(写出所有正确结论的序号)
如图,在 中, ,点 、 分别是线段 、 的中点,过点 作 的平行线交 的延长线于点 ,连接 .
(1)求证: ;
(2)求证:四边形 为矩形.
如图,矩形 中, 为对角线,将矩形 沿 、 所在直线折叠,使点 落在 上的点 处,点 落在 上的点 处,连结 .已知 , ,则 的长为
A.3B.5C. D.
下列说法正确的是
A.一组对边平行另一组对边相等的四边形是平行四边形
B.对角线互相垂直平分的四边形是菱形
C.对角线相等的四边形是矩形
D.对角线互相垂直且相等的四边形是正方形
如图, 是半圆 的直径, 是半圆上的一点, 平分 交半圆于点 ,过点 作 与 的延长线交于点 .
(1)求证: 是半圆的切线;
(2)若 , ,求半圆的直径.
如图,在菱形 中,对角线 , 相交于点 , 是 中点,连接 .过点 作 交 的延长线于点 ,连接 .
求证:(1) ;
(2)四边形 是矩形.
如图, 的对角线 , 相交于点 . , 是 上的两点,并且 ,连接 , .
(1)求证: ;
(2)若 ,连接 , ,判断四边形 的形状,并说明理由.