如图,在中,对角线与相交于点,点,分别为,的中点,延长至,使,连接.
(1)求证:;
(2)当与满足什么数量关系时,四边形是矩形?请说明理由.
下列判定错误的是
A. |
平行四边形的对边相等 |
B. |
对角线相等的四边形是矩形 |
C. |
对角线互相垂直的平行四边形是菱形 |
D. |
正方形既是轴对称图形,又是中心对称图形 |
下列命题是真命题的是
A. |
对角线相等的四边形是矩形 |
B. |
对角线互相垂直的四边形是矩形 |
C. |
对角线互相垂直的矩形是正方形 |
D. |
四边相等的平行四边形是正方形 |
下列命题正确的是
A. |
有一个角是直角的平行四边形是矩形 |
B. |
四条边相等的四边形是矩形 |
C. |
有一组邻边相等的平行四边形是矩形 |
D. |
对角线相等的四边形是矩形 |
综合与实践
动手操作:
第一步:如图1,正方形纸片沿对角线所在的直线折叠,展开铺平.在沿过点的直线折叠,使点,点都落在对角线上.此时,点与点重合,记为点,且点,点,点三点在同一条直线上,折痕分别为,.如图2.
第二步:再沿所在的直线折叠,与重合,得到图3.
第三步:在图3的基础上继续折叠,使点与点重合,如图4,展开铺平,连接,,,.如图5,图中的虚线为折痕.
问题解决:
(1)在图5中,的度数是 ,的值是 .
(2)在图5中,请判断四边形的形状,并说明理由;
(3)在不增加字母的条件下,请你以图中5中的字母表示的点为顶点,动手画出一个菱形(正方形除外),并写出这个菱形: .
综合与实践
问题情境
在综合与实践课上,老师让同学们以"菱形纸片的剪拼"为主题开展数学活动,如图1,将一张菱形纸片 沿对角线 剪开,得到 和 .
操作发现
(1)将图1中的 以 为旋转中心,按逆时针方向旋转角 ,使 ,得到如图2所示的△ ,分别延长 和 交于点 ,则四边形 的形状是 ;
(2)创新小组将图1中的 以 为旋转中心,按逆时针方向旋转角 ,使 ,得到如图3所示的△ ,连接 , ,得到四边形 ,发现它是矩形,请你证明这个结论;
实践探究
(3)缜密小组在创新小组发现结论的基础上,量得图3中 , ,然后提出一个问题:将△ 沿着射线 方向平移 ,得到△ ,连接 , ,使四边形 恰好为正方形,求 的值,请你解答此问题;
(4)请你参照以上操作,将图1中的 在同一平面内进行一次平移,得到△ ,在图4中画出平移后构造出的新图形,标明字母,说明平移及构图方法,写出你发现的结论,不必证明.
已知平行四边形 , 、 是它的两条对角线,那么下列条件中,能判断这个平行四边形为矩形的是
A. |
|
B. |
|
C. |
|
D. |
|
问题发现
(1)如图(1),四边形 中,若 , ,则线段 , 的位置关系为 ;
拓展探究
(2)如图(2),在 中,点 为斜边 的中点,分别以 , 为底边,在 外部作等腰三角形 和等腰三角形 ,连接 , ,分别交 , 于点 , ,试猜想四边形 的形状,并说明理由;
解决问题
(3)如图(3),在正方形 中, ,以点 为旋转中心将正方形 旋转 ,得到正方形 ,请直接写出 的长度.
如图①,在中,,过上一点作交于点,以为顶点,为一边,作,另一边交于点.
(1)求证:四边形为平行四边形;
(2)当点为中点时,的形状为 ;
(3)延长图①中的到点,使,连接,,,得到图②,若,判断四边形的形状,并说明理由.
关于 的叙述,正确的是
A. |
若 ,则 是菱形 |
B. |
若 ,则 是正方形 |
C. |
若 ,则 是矩形 |
D. |
若 ,则 是正方形 |
(年云南省曲靖市)如图,菱形ABCD的对角线AC与BD相交于点O,且BE∥AC,CE∥BD.
(1)求证:四边形OBEC是矩形;
(2)若菱形ABCD的周长是,tanα=,求四边形OBEC的面积.