初中数学

如图,在 Rt Δ ABC 中, C = 90 ° AC = 3 BC = 4 D E 分别是斜边 AB 、直角边 BC 上的点,把 ΔABC 沿着直线 DE 折叠.

(1)如图1,当折叠后点 B 和点 A 重合时,用直尺和圆规作出直线 DE ;(不写作法和证明,保留作图痕迹)

(2)如图2,当折叠后点 B 落在 AC 边上点 P 处,且四边形 PEBD 是菱形时,求折痕 DE 的长.

来源:2018年黑龙江省绥化市中考数学试卷
  • 更新:2021-05-20
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, ACB = 90 ° O D 分别是边 AC AB 的中点,过点 C CE / / AB DO 的延长线于点 E ,连接 AE

(1)求证:四边形 AECD 是菱形;

(2)若四边形 AECD 的面积为24, tan BAC = 3 4 ,求 BC 的长.

来源:2018年广西贺州市中考数学试卷
  • 更新:2021-05-19
  • 题型:未知
  • 难度:未知

如图,在 ABCD 中, AE BC AF CD ,垂足分别为 E F ,且 BE = DF

(1)求证: ABCD 是菱形;

(2)若 AB = 5 AC = 6 ,求 ABCD 的面积.

来源:2018年广西北海市中考数学试卷
  • 更新:2021-05-19
  • 题型:未知
  • 难度:未知

如图,四边形 ABCD 中, AC BD 相交于点 O O AC 的中点, AD / / BC AC = 8 BD = 6

(1)求证:四边形 ABCD 是平行四边形;

(2)若 AC BD ,求 ABCD 的面积.

来源:2017年青海省西宁市中考数学试卷
  • 更新:2021-05-18
  • 题型:未知
  • 难度:未知

如图,四边形 ABCD 是轴对称图形,且直线 AC 是对称轴, AB / / CD ,则下列结论: AC BD AD / / BC 四边形 ABCD 是菱形; ΔABD ΔCDB .其中正确的是               (只填写序号)

来源:2016年海南省中考数学试卷
  • 更新:2021-05-17
  • 题型:未知
  • 难度:未知

如图,在 ABCD 中,用直尺和圆规作 BAD 的平分线 AG BC 于点 E .若 BF = 8 AB = 5 ,则 AE 的长为 (    )

A.5B.6C.8D.12

来源:2017年山东省东营市中考数学试卷
  • 更新:2021-05-16
  • 题型:未知
  • 难度:未知

如图,在 ABCD 中,以点 A 为圆心, AB 长为半径画弧交 AD 于点 F ,再分别以点 B F 为圆心,大于 1 2 BF 的相同长为半径画弧,两弧交于点 P ;连接 AP 并延长交 BC 于点 E ,连接 EF ,则所得四边形 ABEF 是菱形.

(1)根据以上尺规作图的过程,求证:四边形 ABEF 是菱形;

(2)若菱形 ABEF 的周长为16, AE = 4 3 ,求 C 的大小.

来源:2017年山东省滨州市中考数学试卷
  • 更新:2021-05-16
  • 题型:未知
  • 难度:未知

如图,将等边 ΔABC 绕点 C 顺时针旋转 120 ° 得到 ΔEDC ,连接 AD BD .则下列结论:

AC = AD ;② BD AC ;③四边形 ACED 是菱形.

其中正确的个数是 (    )

A.0B.1C.2D.3

来源:2016年山东省临沂市中考数学试卷
  • 更新:2021-05-14
  • 题型:未知
  • 难度:未知

我们给出如下定义:顺次连接任意一个四边形各边中点所得的四边形叫中点四边形.

(1)如图1,四边形 ABCD 中,点 E F G H 分别为边 AB BC CD DA 的中点.求证:中点四边形 EFGH 是平行四边形;

(2)如图2,点 P 是四边形 ABCD 内一点,且满足 PA = PB PC = PD APB = CPD ,点 E F G H 分别为边 AB BC CD DA 的中点,猜想中点四边形 EFGH 的形状,并证明你的猜想;

(3)若改变(2)中的条件,使 APB = CPD = 90 ° ,其他条件不变,直接写出中点四边形 EFGH 的形状.(不必证明)

来源:2016年山东省德州市中考数学试卷
  • 更新:2021-05-14
  • 题型:未知
  • 难度:未知

如图, BD ΔABC 的角平分线,它的垂直平分线分别交 AB BD BC 于点 E F G ,连接 ED DG

(1)请判断四边形 EBGD 的形状,并说明理由;

(2)若 ABC = 30 ° C = 45 ° ED = 2 10 ,点 H BD 上的一个动点,求 HG + HC 的最小值.

来源:2016年山东省滨州市中考数学试卷
  • 更新:2021-05-14
  • 题型:未知
  • 难度:未知

如图,在矩形 ABCD 中, E AD 上一点, PQ 垂直平分 BE ,分别交 AD BE BC 于点 P O Q ,连接 BP EQ

(1)求证:四边形 BPEQ 是菱形;

(2)若 AB = 6 F AB 的中点, OF + OB = 9 ,求 PQ 的长.

来源:2017年江苏省南通市中考数学试卷
  • 更新:2021-05-12
  • 题型:未知
  • 难度:未知

如图,四边形 ABCD 是平行四边形,以点 A 为圆心、 AB 的长为半径画弧交 AD 于点 F ,再分别以点 B F 为圆心、大于 1 2 BF 的长为半径画弧,两弧交于点 M ,作射线 AM BC 于点 E ,连接 EF .下列结论中不一定成立的是 (    )

A. BE = EF B. EF / / CD C. AE 平分 BEF D. AB = AE

来源:2019年辽宁省盘锦市中考数学试卷
  • 更新:2021-05-12
  • 题型:未知
  • 难度:未知

如图,在四边形 ABCD 中, AD / / BC BA = BC BD 平分 ABC

(1)求证:四边形 ABCD 是菱形;

(2)过点 D DE BD ,交 BC 的延长线于点 E ,若 BC = 5 BD = 8 ,求四边形 ABED 的周长.

来源:2018年辽宁省本溪市中考数学试卷
  • 更新:2021-05-09
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, AB = AC D E F 分别为 AB BC AC 的中点,则下列结论:① ΔADF ΔFEC ,②四边形 ADEF 为菱形,③ S ΔADF : S ΔABC = 1 : 4 .其中正确的结论是  .(填写所有正确结论的序号)

来源:2018年湖南省益阳市中考数学试卷
  • 更新:2021-05-09
  • 题型:未知
  • 难度:未知

如图, PA PB O 的切线, A B 为切点, APB = 60 ° ,连接 PO 并延长与 O 交于 C 点,连接 AC BC

(1)求证:四边形 ACBP 是菱形;

(2)若 O 半径为1,求菱形 ACBP 的面积.

来源:2017年贵州省遵义市中考数学试卷
  • 更新:2021-04-27
  • 题型:未知
  • 难度:未知

初中数学菱形的判定与性质试题