初中数学

如图,在平行四边形 ABCD中,点 EFGH分别在边 ABBCCDDA上, AECGAHCF,且 EG平分∠ HEF

(1)求证:四边形 EFGH是菱形;

(2)若 EF=4,∠ HEF=60°,求 EG的长.

来源:2017年内蒙古巴彦淖尔市中考数学试卷
  • 更新:2021-03-22
  • 题型:未知
  • 难度:未知

如图,在平行四边形ABCD中,点EFGH分别在边ABBCCDDA上,AECGAHCF,且EG平分∠HEF

(1)求证:四边形EFGH是菱形;

(2)若EF=4,∠HEF=60°,求EG的长.

来源:2017年内蒙古巴彦淖尔市中考数学试卷
  • 更新:2021-03-22
  • 题型:未知
  • 难度:未知

如图,四边形ABCD内接于⊙O,若四边形ABCO是平行四边形,则∠ADC的大小为(  )

A.45°B.50°C.60°D.75°

来源:2016年甘肃省兰州市中考数学试卷(a卷)
  • 更新:2021-03-12
  • 题型:未知
  • 难度:未知

如图,正方形ABCO的顶点CA分别在x轴、y轴上,BC是菱形BDCE的对角线,若D=60°BC=2,则点D的坐标是  

来源:2016年福建省漳州市中考数学试卷
  • 更新:2021-03-12
  • 题型:未知
  • 难度:未知

如图,在四边形中,是钝角,平分,若 BD = 2 6 , sin DBC = 3 3 ,求对角线的长.

来源:2016年福建省厦门市中考数学试卷
  • 更新:2021-03-12
  • 题型:未知
  • 难度:未知

如图,在四边形中,,点在边上.

(1)判断四边形的形状并加以证明;

(2)若,以过点的直线为轴,将四边形折叠,使点分别落在点上,且经过点,折痕与四边形的另一交点为

①在图2中作出四边形(保留作图痕迹,不必说明作法和理由);

②如果,那么 AP PB 为何值时,

来源:2016年福建省泉州市中考数学试卷
  • 更新:2021-03-12
  • 题型:未知
  • 难度:未知

如图,AC是矩形ABCD的对角线,过AC的中点OEFAC,交BC于点E,交AD于点F,连接AECF

(1)求证:四边形AECF是菱形;

(2)若AB,∠DCF=30°,求四边形AECF的面积.(结果保留根号)

来源:2016年广西贺州市中考数学试卷
  • 更新:2021-03-05
  • 题型:未知
  • 难度:未知

如图,矩形 的对角线 相交于点 关于 的对称图形为

(1)求证:四边形 是菱形;

(2)连接 ,若

①求 的值;

②若点 为线段 上一动点(不与点 重合),连接 ,一动点 从点 出发,以 的速度沿线段 匀速运动到点 ,再以 的速度沿线段 匀速运动到点 ,到达点 后停止运动,当点 沿上述路线运动到点 所需要的时间最短时,求 的长和点 走完全程所需的时间.

来源:2017年广东省广州市中考数学试卷
  • 更新:2021-02-24
  • 题型:未知
  • 难度:未知

如图,正方形 ABCD的边长为1, ACBD是对角线.将△ DCB绕着点 D顺时针旋转45°得到△ DGHHGAB于点 E,连接 DEAC于点 F,连接 FG.则下列结论:

①四边形 AEGF是菱形

②△ AED≌△ GED

③∠ DFG=112.5°

BC+ FG=1.5

其中正确的结论是   

来源:2016年广东省广州市中考数学试卷
  • 更新:2021-02-24
  • 题型:未知
  • 难度:未知

如图①,在 ΔABC 中, AB = AC BAC = 120 ° ,点 E 是边 AB 的中点,点 P 是边 BC 上一动点,设 PC = x PA + PE = y .图②是 y 关于 x 的函数图象,其中 H 是图象上的最低点.那么 a + b 的值为  

来源:2020年内蒙古通辽市中考数学试卷
  • 更新:2021-01-17
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, BD CE 分别是边 AC AB 上的中线, BD CE 于点 O ,点 M N 分别 OB OC 的中点,若 OB = 8 OC = 6 ,则四边形 DEMN 的周长是 (    )

A.

14

B.

20

C.

22

D.

28

来源:2020年内蒙古呼伦贝尔市中考数学试卷
  • 更新:2021-01-17
  • 题型:未知
  • 难度:未知

如图, AB O 的直径,弦 CD AB ,垂足为 E BCD = 30 ° CD = 2 3 ,则阴影部分面积 S 阴影 =   

来源:2020年内蒙古鄂尔多斯市中考数学试卷
  • 更新:2021-01-17
  • 题型:未知
  • 难度:未知

如图, ABCD 的对角线 AC BD 交于点 E ,以 AB 为直径的 O 经过点 E ,与 AD 交于点 F G AD 延长线上一点,连接 BG ,交 AC 于点 H ,且 DBG = 1 2 BAD

(1)求证: BG O 的切线;

(2)若 CH = 3 tan DBG = 1 2 ,求 O 的直径.

来源:2020年辽宁省锦州市中考数学试卷
  • 更新:2021-01-16
  • 题型:未知
  • 难度:未知

如图,二次函数 y = x 2 + bx + c 的图象交 x 轴于点 A ( - 3 , 0 ) B ( 1 , 0 ) ,交 y 轴于点 C .点 P ( m , 0 ) x 轴上的一动点, PM x 轴,交直线 AC 于点 M ,交抛物线于点 N

(1)求这个二次函数的表达式;

(2)①若点 P 仅在线段 AO 上运动,如图,求线段 MN 的最大值;

②若点 P x 轴上运动,则在 y 轴上是否存在点 Q ,使以 M N C Q 为顶点的四边形为菱形.若存在,请直接写出所有满足条件的点 Q 的坐标;若不存在,请说明理由.

来源:2020年辽宁省阜新市中考数学试卷
  • 更新:2021-01-16
  • 题型:未知
  • 难度:未知

能够完全重合的平行四边形纸片 ABCD AEFG 按图①方式摆放,其中 AD = AG = 5 AB = 9 .点 D G 分别在边 AE AB 上, CD FG 相交于点 H

【探究】求证:四边形 AGHD 是菱形.

【操作一】固定图①中的平行四边形纸片 ABCD ,将平行四边形纸片 AEFG 绕着点 A 顺时针旋转一定的角度,使点 F 与点 C 重合,如图②.则这两张平行四边形纸片未重叠部分图形的周长和为       

【操作二】将图②中的平行四边形纸片 AEFG 绕着点 A 继续顺时针旋转一定的角度,使点 E 与点 B 重合,连接 DG CF ,如图③,若 sin BAD = 4 5 ,则四边形 DCFG 的面积为   

来源:2020年吉林省中考数学试卷
  • 更新:2021-01-15
  • 题型:未知
  • 难度:未知

初中数学菱形的判定与性质试题