如图,在平行四边形 ABCD中,点 E, F, G, H分别在边 AB, BC, CD, DA上, AE= CG, AH= CF,且 EG平分∠ HEF.
(1)求证:四边形 EFGH是菱形;
(2)若 EF=4,∠ HEF=60°,求 EG的长.
如图,在平行四边形ABCD中,点E,F,G,H分别在边AB,BC,CD,DA上,AE=CG,AH=CF,且EG平分∠HEF.
(1)求证:四边形EFGH是菱形;
(2)若EF=4,∠HEF=60°,求EG的长.
如图,四边形ABCD内接于⊙O,若四边形ABCO是平行四边形,则∠ADC的大小为( )
A.45°B.50°C.60°D.75°
如图,正方形ABCO的顶点C、A分别在x轴、y轴上,BC是菱形BDCE的对角线,若∠D=60°,BC=2,则点D的坐标是 .
如图,在四边形中,,,点在边上.
(1)判断四边形的形状并加以证明;
(2)若,以过点的直线为轴,将四边形折叠,使点、分别落在点、上,且经过点,折痕与四边形的另一交点为.
①在图2中作出四边形(保留作图痕迹,不必说明作法和理由);
②如果,那么 为何值时,.
如图,AC是矩形ABCD的对角线,过AC的中点O作EF⊥AC,交BC于点E,交AD于点F,连接AE,CF.
(1)求证:四边形AECF是菱形;
(2)若AB=,∠DCF=30°,求四边形AECF的面积.(结果保留根号)
如图,矩形 的对角线 , 相交于点 , 关于 的对称图形为 .
(1)求证:四边形 是菱形;
(2)连接 ,若 , .
①求 的值;
②若点 为线段 上一动点(不与点 重合),连接 ,一动点 从点 出发,以 的速度沿线段 匀速运动到点 ,再以 的速度沿线段 匀速运动到点 ,到达点 后停止运动,当点 沿上述路线运动到点 所需要的时间最短时,求 的长和点 走完全程所需的时间.
如图,正方形 ABCD的边长为1, AC, BD是对角线.将△ DCB绕着点 D顺时针旋转45°得到△ DGH, HG交 AB于点 E,连接 DE交 AC于点 F,连接 FG.则下列结论:
①四边形 AEGF是菱形
②△ AED≌△ GED
③∠ DFG=112.5°
④ BC+ FG=1.5
其中正确的结论是 .
如图①,在 中, , ,点 是边 的中点,点 是边 上一动点,设 , .图②是 关于 的函数图象,其中 是图象上的最低点.那么 的值为 .
如图,在 中, , 分别是边 , 上的中线, 于点 ,点 , 分别 , 的中点,若 , ,则四边形 的周长是
A. |
14 |
B. |
20 |
C. |
22 |
D. |
28 |
如图, 的对角线 , 交于点 ,以 为直径的 经过点 ,与 交于点 , 是 延长线上一点,连接 ,交 于点 ,且 .
(1)求证: 是 的切线;
(2)若 , ,求 的直径.
如图,二次函数 的图象交 轴于点 , ,交 轴于点 .点 是 轴上的一动点, 轴,交直线 于点 ,交抛物线于点 .
(1)求这个二次函数的表达式;
(2)①若点 仅在线段 上运动,如图,求线段 的最大值;
②若点 在 轴上运动,则在 轴上是否存在点 ,使以 , , , 为顶点的四边形为菱形.若存在,请直接写出所有满足条件的点 的坐标;若不存在,请说明理由.