如图,二次函数 y = x 2 + bx + c 的图象交 x 轴于点 A ( - 3 , 0 ) , B ( 1 , 0 ) ,交 y 轴于点 C .点 P ( m , 0 ) 是 x 轴上的一动点, PM ⊥ x 轴,交直线 AC 于点 M ,交抛物线于点 N .
(1)求这个二次函数的表达式;
(2)①若点 P 仅在线段 AO 上运动,如图,求线段 MN 的最大值;
②若点 P 在 x 轴上运动,则在 y 轴上是否存在点 Q ,使以 M , N , C , Q 为顶点的四边形为菱形.若存在,请直接写出所有满足条件的点 Q 的坐标;若不存在,请说明理由.
如图,已知∠MON=25°,矩形ABCD的边BC在OM上,对角线AC⊥ON.当AC=5时,求AD的长.(参考数据:sin25°=0.42;cos25°=0.91;tan25°=0.47,结果精确到0.1)
(本题满分8分,每题4分) (1)解方程: x2-4x-3=0 (2)解不等式组:
(本题7分)阅读下列材料: 一般地,n个相同的因数a相乘记为an,记为an.如2×2×2=23=8,此时,3叫做以2为底8的对数,记为log28(即log28=3).一般地,若an=b(a>0且a≠1,b>0),则n叫做以a为底b的对数,记为logab(即logab=n).如34=81,则4叫做以3为底81的对数,记为log381(即log381=4). (1)计算以下各对数的值: log24=,log216=,log264=. (2)观察(1)中三数4、16、64之间满足怎样的关系式,log24、log216、log264之间又满足怎样的关系式; (3)由(2)的结果,你能归纳出一个一般性的结论吗? logaM+logaN=;(a>0且a≠1,M>0,N>0) (4)根据幂的运算法则:an•am=an+m以及对数的含义说明上述结论成立.
已知:在△ABC和△DEF中,∠A=40°,∠E+∠F=100°,将△DEF如图摆放,使得∠D的两条边分别经过点B和点C. (1)当将△DEF如图1摆放时,则∠ABD+∠ACD=度; (2)当将△DEF如图2摆放时,请求出∠ABD+∠ACD的度数,并说明理由; (3)能否将△DEF摆放到某个位置时,使得BD、CD同时平分∠ABC和∠ACB?直接写出结论.(填“能”或“不能”)
(本题7分)下面是某同学对多项式(-4x+2)(-4x+6)+4进行因式分解的过程. 解:设x-4x=y, 原式=(y+2)(y+6)+4(第一步) =+8y+16(第二步) =(第三步) =(第四步) 请问: (1)该同学因式分解的结果是否彻底?____________。(填“彻底”或“不彻底”)若不彻底,请直接写出因式分解的最后结果____________________________; (2)请你模仿以上方法尝试对多项式(-2m)(-2m+2)+1进行因式分解.