初中数学

如图1,将一张矩形纸片ABCD沿着对角线BD向上折叠,顶点C落到点E处,BEAD于点F

(1)求证:△BDF是等腰三角形;

(2)如图2,过点DDGBE,交BC于点G,连接FGBD于点O

①判断四边形BFDG的形状,并说明理由;

②若AB=6,AD=8,求FG的长.

来源:2017年甘肃省兰州市中考数学试卷
  • 更新:2021-04-15
  • 题型:未知
  • 难度:未知

已知菱形的一个角与三角形的一个角重合,然后它的对角顶点在这个重合角的对边上,这个菱形称为这个三角形的亲密菱形,如图,在△ CFE中, CF=6, CE=12,∠ FCE=45°,以点 C为圆心,以任意长为半径作 AD ,再分别以点 A和点 D为圆心,大于 1 2 AD长为半径作弧,交 EF于点 BABCD

(1)求证:四边形 ACDB为△ FEC的亲密菱形;

(2)求四边形 ACDB的面积.

来源:2018年广东省深圳市中考数学试卷
  • 更新:2021-04-13
  • 题型:未知
  • 难度:未知

如图,在平行四边形 ABCD中, EF分别是 ABBC边上的中点, CEAB,垂足为 EAFBC,垂足为 FAFCE相交于点 G

(1)求证:△ CFG≌△ AEG

(2)若 AB=6,求四边形 AGCD的对角线 GD的长.

来源:2018年内蒙古巴彦淖尔市中考数学试卷
  • 更新:2021-04-09
  • 题型:未知
  • 难度:未知

邻边不相等的平行四边形纸片,剪去一个菱形,余下的一个四边形,称为第一次操作;在余下的四边形纸片中再剪去一个菱形,又余下一个四边形,称为第二次操作;…依此类推,若第 n次操作余下的四边形是菱形,则称原平行四边形为 n阶准菱形,如图1,▱ ABCD中,若 AB=1, BC=2,则▱ ABCD为1阶准菱形.

(1)猜想与计算:

邻边长分别为3和5的平行四边形是   阶准菱形;已知▱ ABCD的邻边长分别为 abab),满足 a=8 b+ rb=5 r,请写出▱ ABCD  阶准菱形.

(2)操作与推理:

小明为了剪去一个菱形,进行了如下操作:如图2,把▱ ABCD沿 BE折叠(点 EAD上),使点 A落在 BC边上的点 F处,得到四边形 ABFE.请证明四边形 ABFE是菱形.

来源:2017年内蒙古通辽市中考数学试卷
  • 更新:2021-03-22
  • 题型:未知
  • 难度:未知

如图,四边形 ABCD中, MAMCMBMD,以 AB为直径的圆 O过点 M且与 DC延长线相切于点 E

(1)求证:四边形 ABCD是菱形;

(2)若 AB=4,求 BM 的长(结果请保留π)

来源:2017年内蒙古鄂尔多斯市中考数学试卷
  • 更新:2021-03-22
  • 题型:未知
  • 难度:未知

如图,在△ ABC中,∠ C=90°,∠ B=30°, AD是△ ABC的角平分线, DEBAAC于点 EDFCAAB于点 F,已知 CD=3.

(1)求 AD的长;

(2)求四边形 AEDF的周长.(注意:本题中的计算过程和结果均保留根号)

来源:2017年内蒙古包头市中考数学试卷
  • 更新:2021-03-22
  • 题型:未知
  • 难度:未知

如图,在平行四边形 ABCD中,点 EFGH分别在边 ABBCCDDA上, AECGAHCF,且 EG平分∠ HEF

(1)求证:四边形 EFGH是菱形;

(2)若 EF=4,∠ HEF=60°,求 EG的长.

来源:2017年内蒙古巴彦淖尔市中考数学试卷
  • 更新:2021-03-22
  • 题型:未知
  • 难度:未知

如图,在平行四边形ABCD中,点EFGH分别在边ABBCCDDA上,AECGAHCF,且EG平分∠HEF

(1)求证:四边形EFGH是菱形;

(2)若EF=4,∠HEF=60°,求EG的长.

来源:2017年内蒙古巴彦淖尔市中考数学试卷
  • 更新:2021-03-22
  • 题型:未知
  • 难度:未知

如图,在四边形中,是钝角,平分,若 BD = 2 6 , sin DBC = 3 3 ,求对角线的长.

来源:2016年福建省厦门市中考数学试卷
  • 更新:2021-03-12
  • 题型:未知
  • 难度:未知

如图,AC是矩形ABCD的对角线,过AC的中点OEFAC,交BC于点E,交AD于点F,连接AECF

(1)求证:四边形AECF是菱形;

(2)若AB,∠DCF=30°,求四边形AECF的面积.(结果保留根号)

来源:2016年广西贺州市中考数学试卷
  • 更新:2021-03-05
  • 题型:未知
  • 难度:未知

如图,矩形 的对角线 相交于点 关于 的对称图形为

(1)求证:四边形 是菱形;

(2)连接 ,若

①求 的值;

②若点 为线段 上一动点(不与点 重合),连接 ,一动点 从点 出发,以 的速度沿线段 匀速运动到点 ,再以 的速度沿线段 匀速运动到点 ,到达点 后停止运动,当点 沿上述路线运动到点 所需要的时间最短时,求 的长和点 走完全程所需的时间.

来源:2017年广东省广州市中考数学试卷
  • 更新:2021-02-24
  • 题型:未知
  • 难度:未知

如图, ABCD 的对角线 AC BD 交于点 E ,以 AB 为直径的 O 经过点 E ,与 AD 交于点 F G AD 延长线上一点,连接 BG ,交 AC 于点 H ,且 DBG = 1 2 BAD

(1)求证: BG O 的切线;

(2)若 CH = 3 tan DBG = 1 2 ,求 O 的直径.

来源:2020年辽宁省锦州市中考数学试卷
  • 更新:2021-01-16
  • 题型:未知
  • 难度:未知

能够完全重合的平行四边形纸片 ABCD AEFG 按图①方式摆放,其中 AD = AG = 5 AB = 9 .点 D G 分别在边 AE AB 上, CD FG 相交于点 H

【探究】求证:四边形 AGHD 是菱形.

【操作一】固定图①中的平行四边形纸片 ABCD ,将平行四边形纸片 AEFG 绕着点 A 顺时针旋转一定的角度,使点 F 与点 C 重合,如图②.则这两张平行四边形纸片未重叠部分图形的周长和为       

【操作二】将图②中的平行四边形纸片 AEFG 绕着点 A 继续顺时针旋转一定的角度,使点 E 与点 B 重合,连接 DG CF ,如图③,若 sin BAD = 4 5 ,则四边形 DCFG 的面积为   

来源:2020年吉林省中考数学试卷
  • 更新:2021-01-15
  • 题型:未知
  • 难度:未知

如图,在四边形中,,对角线的垂直平分线与边分别相交于点

(1)求证:四边形是菱形;

(2)若,求菱形的周长.

来源:2020年江苏省连云港市中考数学试卷
  • 更新:2020-12-31
  • 题型:未知
  • 难度:未知

如图,在菱形 ABCD 中,将对角线 AC 分别向两端延长到点 E F ,使得 AE = CF .连接 DE DF BE BF

求证:四边形 BEDF 是菱形.

来源:2020年湖南省郴州市中考数学试卷
  • 更新:2020-12-31
  • 题型:未知
  • 难度:未知

初中数学菱形的判定与性质解答题