初中数学

如图,菱形 ABCD 中, B = 60 ° ,点 P 从点 B 出发,沿折线 BC - CD 方向移动,移动到点 D 停止.在 ΔABP 形状的变化过程中,依次出现的特殊三角形是 (    )

A.

直角三角形 等边三角形 等腰三角形 直角三角形

B.

直角三角形 等腰三角形 直角三角形 等边三角形

C.

直角三角形 等边三角形 直角三角形 等腰三角形

D.

等腰三角形 等边三角形 直角三角形 等腰三角形

来源:2021年浙江省绍兴市中考数学试卷
  • 更新:2021-08-17
  • 题型:未知
  • 难度:未知

如图,四边形 ABCD 是菱形,点 E F 分别在 BC DC 边上,添加以下条件不能判定 ΔABE ΔADF 的是 (    )

A.

BE = DF

B.

BAE = DAF

C.

AE = AD

D.

AEB = AFD

来源:2021年四川省成都市中考数学试卷
  • 更新:2021-08-12
  • 题型:未知
  • 难度:未知

如图,在菱形 ABCD 中, AB = 2 B 是锐角, AE BC 于点 E M AB 的中点,连接 MD ME .若 EMD = 90 ° ,则 cos B 的值为  

来源:2018年浙江省宁波市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

如图,菱形 ABCD 的边长为6, ABC = 120 ° M BC 边的一个三等分点, P 是对角线 AC 上的动点,当 PB + PM 的值最小时, PM 的长是 (    )

A. 7 2 B. 2 7 3 C. 3 5 5 D. 26 4

来源:2017年山东省莱芜市中考数学试卷
  • 更新:2021-05-16
  • 题型:未知
  • 难度:未知

如图,四边形 ABCD 是菱形,对角线 AC BD 相交于点 O AC = 8 BD = 6 ,点 E CD 上一点,连接 OE ,若 OE = CE ,则 OE 的长是 (    )

A.

2

B.

5 2

C.

3

D.

4

来源:2020年辽宁省抚顺市中考数学试卷
  • 更新:2021-01-15
  • 题型:未知
  • 难度:未知

如图,在射线 BA BC AD CD 围成的菱形 ABCD 中, ABC = 60 ° AB = 6 3 O 是射线 BD 上一点, O BA BC 都相切,与 BO 的延长线交于点 M .过 M EF BD 交线段 BA (或射线 AD ) 于点 E ,交线段 BC (或射线 CD ) 于点 F .以 EF 为边作矩形 EFGH ,点 G H 分别在围成菱形的另外两条射线上.

(1)求证: BO = 2 OM

(2)设 EF > HE ,当矩形 EFGH 的面积为 24 3 时,求 O 的半径.

(3)当 HE HG O 相切时,求出所有满足条件的 BO 的长.

来源:2016年浙江省温州市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

如图,在菱形 ABCD 中, AB = 2 A = 120 ° ,过菱形 ABCD 的对称中心 O 分别作边 AB BC 的垂线,交各边于点 E F G H ,则四边形 EFGH 的周长为 (    )

A.

3 + 3

B.

2 + 2 3

C.

2 + 3

D.

1 + 2 3

来源:2021年安徽省中考数学试卷
  • 更新:2021-08-18
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中, O 为坐标原点,点 A 的坐标为 ( 5 , 0 ) ,菱形 OABC 的顶点 B C 都在第一象限, tan AOC = 4 3 ,将菱形绕点 A 按顺时针方向旋转角 α ( 0 ° < α < AOC ) 得到菱形 FADE (点 O 的对应点为点 F ) EF OC 交于点 G ,连接 AG

(1)求点 B 的坐标.

(2)当 OG = 4 时,求 AG 的长.

(3)求证: GA 平分 OGE

(4)连接 BD 并延长交 x 轴于点 P ,当点 P 的坐标为 ( 12 , 0 ) 时,求点 G 的坐标.

来源:2016年浙江省宁波市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,抛物线经过原点,顶点为

(1)求抛物线的函数解析式;

(2)设点为抛物线的对称轴上的一点,点在该抛物线上,当四边

为菱形时,求出点的坐标;

(3)在(2)的条件下,抛物线在第一象限的图象上是否存在一点,使得点到直线的距离与其到轴的距离相等?若存在,求出直线的函数解析式;若不存在,请说明理由.

来源:2019年四川省阿坝州中考数学试卷
  • 更新:2021-01-02
  • 题型:未知
  • 难度:未知

如图,在菱形 ABCD 中, BAD = 120 ° DE BC BC 的延长线于点 E .连结 AE BD 于点 F ,交 CD 于点 G FH CD 于点 H ,连结 CF .有下列结论:① AF = CF ;② A F 2 = EF FG ;③ FG : EG = 4 : 5 ;④ cos GFH = 3 21 14 .其中所有正确结论的序号为   

来源:2021年四川省资阳市中考数学试卷
  • 更新:2021-08-15
  • 题型:未知
  • 难度:未知

问题解决:如图1,在矩形 ABCD 中,点 E F 分别在 AB BC 边上, DE = AF DE AF 于点 G

(1)求证:四边形 ABCD 是正方形;

(2)延长 CB 到点 H ,使得 BH = AE ,判断 ΔAHF 的形状,并说明理由.

类比迁移:如图2,在菱形 ABCD 中,点 E F 分别在 AB BC 边上, DE AF 相交于点 G DE = AF AED = 60 ° AE = 6 BF = 2 ,求 DE 的长.

来源:2021年甘肃省武威市中考数学试卷
  • 更新:2021-07-22
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,有抛物线.抛物线经过原点,与轴正半轴交于点,与其对称轴交于点是抛物线上一点,且在轴上方,过点轴的垂线交抛物线于点,过点的垂线交抛物线于点(不与点重合),连结,设点的横坐标为

(1)求的值;

(2)当抛物线经过原点时,设重叠部分图形的周长为

①求的值;

②求之间的函数关系式;

(3)当为何值时,存在点,使以点为顶点的四边形是轴对称图形?直接写出的值.

来源:2016年吉林省长春市中考数学试卷
  • 更新:2021-01-04
  • 题型:未知
  • 难度:未知

如图,菱形 ABCD 的边长为1, ABC = 60 ° ,点 E 是边 AB 上任意一点(端点除外),线段 CE 的垂直平分线交 BD CE 分别于点 F G AE EF 的中点分别为 M N

(1)求证: AF = EF

(2)求 MN + NG 的最小值;

(3)当点 E AB 上运动时, CEF 的大小是否变化?为什么?

来源:2020年山东省临沂市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

已知菱形 ABCD 的面积为 2 3 ,点 E 是一边 BC 上的中点,点 P 是对角线 BD 上的动点.连接 AE ,若 AE 平分 BAC ,则线段 PE PC 的和的最小值为   ,最大值为   

来源:2021年内蒙古呼和浩特市中考数学试卷
  • 更新:2021-08-19
  • 题型:未知
  • 难度:未知

如图,在菱形 ABCD 中, AB = AC ,点 E F G 分别在边 BC CD 上, BE = CG AF 平分 EAG ,点 H 是线段 AF 上一动点(与点 A 不重合).

(1)求证: ΔAEH ΔAGH

(2)当 AB = 12 BE = 4 时.

ΔDGH 周长的最小值;

②若点 O AC 的中点,是否存在直线 OH ΔACE 分成三角形和四边形两部分,其中三角形的面积与四边形的面积比为 1 : 3 .若存在,请求出 AH AF 的值;若不存在,请说明理由.

来源:2020年山东省济宁市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

初中数学菱形的性质试题