我们定义:如图1,在中,把绕点顺时针旋转得到,把绕点逆时针旋转得到,连接.当时,我们称△是的“旋补三角形”,△ 边上的中线叫做的“旋补中线”,点叫做“旋补中心”.
特例感知:
(1)在图2,图3中,△是的“旋补三角形”, 是的“旋补中线”.
①如图2,当为等边三角形时,与的数量关系为 ;
②如图3,当,时,则长为 .
猜想论证:
(2)在图1中,当为任意三角形时,猜想与的数量关系,并给予证明.
拓展应用
(3)如图4,在四边形,,,,,.在四边形内部是否存在点,使是的“旋补三角形”?若存在,给予证明,并求的“旋补中线”长;若不存在,说明理由.
如图,在四边形 中, , , 分别平分 , ,并交线段 , 于点 , (点 , 不重合).在线段 上取点 , (点 在 之间),使 .当点 从点 匀速运动到点 时,点 恰好从点 匀速运动到点 .记 , ,已知 ,当 为 中点时, .
(1)判断 与 的位置关系,并说明理由.
(2)求 , 的长.
(3)若 .
①当 时,通过计算比较 与 的大小关系.
②连结 ,当 所在直线经过四边形 的一个顶点时,求所有满足条件的 的值.
如图,在平面直角坐标系中,平行四边形的顶点,的坐标分别为,,经过,两点的抛物线与轴的一个交点的坐标为.
(1)求该抛物线的解析式;
(2)若的平分线交于点,交抛物线的对称轴于点,点是轴上一动点,当的值最小时,求点的坐标;
(3)在(2)的条件下,过点作的垂线交于点,点,分别为抛物线及其对称轴上的动点,是否存在这样的点,,使得以点,,,为顶点的四边形为平行四边形?若存在,直接写出点的坐标,若不存在,说明理由.
如图1,抛物线 与 轴交于 , ,与 轴交于点 .已知直线 过 , 两点.
(1)求抛物线和直线 的表达式;
(2)点 是抛物线上的一个动点.
①如图1,若点 在第一象限内,连接 ,交直线 于点 .设 的面积为 , 的面积为 ,求 的最大值;
②如图2,抛物线的对称轴 与 轴交于点 ,过点 作 ,垂足为 .点 是对称轴 上的一个动点,是否存在以点 , , , 为顶点的四边形是平行四边形?若存在,求出点 , 的坐标;若不存在,请说明理由.
如图,抛物线交轴于,两点,交轴于点.直线经过点,.
(1)求抛物线的解析式;
(2)过点的直线交直线于点.
①当时,过抛物线上一动点(不与点,重合),作直线的平行线交直线于点,若以点,,,为顶点的四边形是平行四边形,求点的横坐标;
②连接,当直线与直线的夹角等于的2倍时,请直接写出点的坐标.
如图1,在平面直角坐标系中, 是坐标原点,抛物线 与 轴正半轴交于点 ,与 轴交于点 ,连接 ,点 , 分别是 , 的中点, ,且 始终保持边 经过点 ,边 经过点 ,边 与 轴交于点 ,边 与 轴交于点 .
(1)填空: 的长是 , 的度数是 度;
(2)如图2,当 ,连接 .
①求证:四边形 是平行四边形;
②判断点 是否在该抛物线的对称轴上,并说明理由;
(3)如图3,当边 经过点 时,(此时点 与点 重合),过点 作 ,交 延长线上于点 ,延长 到点 ,使 ,过点 作 ,在 上取一点 ,使得 (点 , 在直线 的同侧),连接 ,请直接写出 的长.
如图,已知抛物线 与 轴交于 、 两点,与 轴交于点
(1)求点 , , 的坐标;
(2)点 是此抛物线上的点,点 是其对称轴上的点,求以 , , , 为顶点的平行四边形的面积;
(3)此抛物线的对称轴上是否存在点 ,使得 是等腰三角形?若存在,请求出点 的坐标;若不存在,请说明理由.
在等腰 中, , 是直角三角形, , ,连接 、 ,点 是 的中点,连接 .
(1)当 ,点 在边 上时,如图①所示,求证: ;
(2)当 ,把 绕点 逆时针旋转,顶点 落在边 上时,如图②所示,当 ,点 在边 上时,如图③所示,猜想图②、图③中线段 和 又有怎样的数量关系?请直接写出你的猜想,不需证明.
已知, 中, , 是 边上一点,作 ,分别交边 , 于点 , .
(1)若 (如图 ,求证: .
(2)若 ,过点 作 ,交 (或 的延长线)于点 .试猜想:线段 , 和 之间的数量关系,并就 情形(如图 说明理由.
(3)若点 与 重合(如图 , ,且 .
①求 的度数;
②设 , , ,试证明: .
如图,在平面直角坐标系中,四边形 的边 在 轴上,点 在 轴的负半轴上,直线 ,且 , ,将经过 、 两点的直线 向右平移,平移后的直线与 轴交于点 ,与直线 交于点 ,设 的长为 .
(1)四边形 的面积为 ;
(2)设四边形 被直线 扫过的面积(阴影部分)为 ,请直接写出 关于 的函数解析式;
(3)当 时,直线 上有一动点 ,作 直线 于点 ,交 轴于点 ,将 沿直线 折叠得到 ,探究:是否存在点 ,使点 恰好落在坐标轴上?若存在,请求出点 的坐标;若不存在,请说明理由.
如图1,,分别在射线,上,且为钝角,现以线段,为斜边向的外侧作等腰直角三角形,分别是,,点,,分别是,,的中点.
(1)求证:;
(2)延长,交于点.
①如图2,若,求证:为等边三角形;
②如图3,若,求大小和的值.
在平面直角坐标系中,抛物线 经过点 和点 ,与 轴交于点 ,与 轴的另一交点为点 .
(1)求抛物线的解析式;
(2)如图1,连接 ,在抛物线上是否存在点 ,使得 ?若存在,请求出点 的坐标;若不存在,请说明理由;
(3)如图2,连接 ,交 轴于点 ,点 是线段 上的动点(不与点 ,点 重合),将 沿 所在直线翻折,得到 ,当 与 重叠部分的面积是 面积的 时,请直接写出线段 的长.
如图,在平面直角坐标系中,四边形 的边 在 轴上,点 在 轴的负半轴上,直线 ,且 , ,将经过 、 两点的直线 向右平移,平移后的直线与 轴交于点 ,与直线 交于点 ,设 的长为 .
(1)四边形 的面积为 ;
(2)设四边形 被直线 扫过的面积(阴影部分)为 ,请直接写出 关于 的函数解析式;
(3)当 时,直线 上有一动点 ,作 直线 于点 ,交 轴于点 ,将 沿直线 折叠得到 ,探究:是否存在点 ,使点 恰好落在坐标轴上?若存在,请求出点 的坐标;若不存在,请说明理由.
如图1, 中, , 为锐角.要在对角线 上找点 , ,使四边形 为平行四边形,现有图2中的甲、乙、丙三种方案,则正确的方案
A. |
甲、乙、丙都是 |
B. |
只有甲、乙才是 |
C. |
只有甲、丙才是 |
D. |
只有乙、丙才是 |