如图,正方形 , 是 边上任意一点(不与 、 重合), 于点 , ,且交 于点 .
(1)求证: ;
(2)四边形 是否可能是平行四边形,如果可能,请指出此时点 的位置,如不可能,请说明理由.
如图,抛物线 与 轴相交于点 和点 ,与 轴相交于点 ,作直线 .
(1)求抛物线的解析式;
(2)在直线 上方的抛物线上存在点 ,使 ,求点 的坐标;
(3)在(2)的条件下,点 的坐标为 ,点 在抛物线上,点 在直线 上.当以 , , , 为顶点的四边形是平行四边形时,请直接写出点 的坐标.
如图, 的对角线 , 交于点 ,以 为直径的 经过点 ,与 交于点 , 是 延长线上一点,连接 ,交 于点 ,且 .
(1)求证: 是 的切线;
(2)若 , ,求 的直径.
如图,在平行四边形 中, 是对角线, ,以点 为圆心,以 的长为半径作 ,交 边于点 ,交 于点 ,连接 .
(1)求证: 与 相切;
(2)若 , ,求阴影部分的面积.
如图,在 中, , , 是 边上的一点,连接 ,作 于点 ,过点 作 的垂线交 的延长线于点 .
(1)如图1,求证: ;
(2)如图2,以 , 为邻边作平行四边形 ,连接 交 于点 ,连接 ,求 的值;
(3)如图3,若 是 的中点,以 , 为邻边作平行四边形 ,连接 交 于点 ,连接 ,经探究发现 ,请直接写出 的值.
如图,在 中, 是对角线 、 的交点, , ,垂足分别为点 、 .
(1)求证: .
(2)若 , ,求 的值.
如图, 的对角线 、 相交于点 ,过点 作 ,分别交 、 于点 、 ,连接 、 .
(1)若 ,求 的长;
(2)判断四边形 的形状,并说明理由.
如图,二次函数 的图象与 轴正半轴交于点 ,平行于 轴的直线 与该抛物线交于 、 两点(点 位于点 左侧),与抛物线对称轴交于点 .
(1)求 的值;
(2)设 、 是 轴上的点(点 位于点 左侧),四边形 为平行四边形.过点 、 分别作 轴的垂线,与抛物线交于点 , 、 , .若 ,求 、 的值.
(1)如图1,点为矩形对角线上一点,过点作,分别交、于点、.若,,的面积为,的面积为,则 ;
(2)如图2,点为内一点(点不在上),点、、、分别为各边的中点.设四边形的面积为,四边形的面积为(其中,求的面积(用含、的代数式表示);
(3)如图3,点为内一点(点不在上),过点作,,与各边分别相交于点、、、.设四边形的面积为,四边形的面积为(其中,求的面积(用含、的代数式表示);
(4)如图4,点、、、把四等分.请你在圆内选一点(点不在、上),设、、围成的封闭图形的面积为,、、围成的封闭图形的面积为,的面积为,的面积为,根据你选的点的位置,直接写出一个含有、、、的等式(写出一种情况即可).
如图所示,抛物线 与 轴相交于 、 两点,与 轴相交于点 ,点 为抛物线的顶点.
(1)求点 及顶点 的坐标.
(2)若点 是第四象限内抛物线上的一个动点,连接 、 ,求 面积的最大值及此时点 的坐标.
(3)若点 是抛物线对称轴上的动点,点 是抛物线上的动点,是否存在以点 、 、 、 为顶点的四边形是平行四边形.若存在,求出点 的坐标;若不存在,试说明理由.
(4)直线 交 轴于点 ,若点 是线段 上的一个动点,是否存在以点 、 、 为顶点的三角形与 相似.若存在,求出点 的坐标;若不存在,请说明理由.
定义:对角线互相垂直且相等的四边形叫做垂等四边形.
(1)下面四边形是垂等四边形的是 ;(填序号)
①平行四边形;②矩形;③菱形;④正方形
(2)图形判定:如图1,在四边形 中, , ,过点 作 垂线交 的延长线于点 ,且 ,证明:四边形 是垂等四边形.
(3)由菱形面积公式易知性质:垂等四边形的面积等于两条对角线乘积的一半.应用:在图2中,面积为24的垂等四边形 内接于 中, .求 的半径.
如图,在 中,点 在 的延长线上,点 在 的延长线上,满足 .连接 ,分别与 , 交于点 , .
求证: .
如图,在 中,以点 为圆心, 长为半径画弧,交 于点 ,在 上截取 .连接 .
(1)求证:四边形 是菱形;
(2)请用无刻度的直尺在 内找一点 ,使 .(标出点 的位置,保留作图痕迹,不写作法)
在平行四边形 中, 为 的中点,请仅用无刻度的直尺完成下列画图,不写画法,保留画图痕迹.
(1)如图1,在 上找出一点 ,使点 是 的中点;
(2)如图2,在 上找出一点 ,使点 是 的一个三等分点.