初中数学

如图,在 ABCD 中, AE BC AF CD ,垂足分别为 E F ,且 BE = DF

(1)求证: ABCD 是菱形;

(2)若 AB = 5 AC = 6 ,求 ABCD 的面积.

来源:2018年广西北海市中考数学试卷
  • 更新:2021-05-19
  • 题型:未知
  • 难度:未知

如图,AFBC是半圆O上的四个点,四边形OABC是平行四边形,∠FAB=15°,连接OFAB于点E,过点COF的平行线交AB的延长线于点D,延长AF交直线CD于点H

(1)求证:CD是半圆O的切线;

(2)若 DH = 6 - 3 3 ,求EF和半径OA的长.

来源:2016年湖北省荆州市中考数学试卷
  • 更新:2021-04-08
  • 题型:未知
  • 难度:未知

如图,在平行四边形 ABCD 中, DB = DA ,点 F AB 的中点,连接 DF 并延长,交 CB 的延长线于点 E ,连接 AE

(1)求证:四边形 AEBD 是菱形;

(2)若 DC = 10 tan DCB = 3 ,求菱形 AEBD 的面积.

来源:2018年江苏省扬州市中考数学试卷
  • 更新:2021-05-25
  • 题型:未知
  • 难度:未知

邻边不相等的平行四边形纸片,剪去一个菱形,余下的一个四边形,称为第一次操作;在余下的四边形纸片中再剪去一个菱形,又余下一个四边形,称为第二次操作;…依此类推,若第 n次操作余下的四边形是菱形,则称原平行四边形为 n阶准菱形,如图1,▱ ABCD中,若 AB=1, BC=2,则▱ ABCD为1阶准菱形.

(1)猜想与计算:

邻边长分别为3和5的平行四边形是   阶准菱形;已知▱ ABCD的邻边长分别为 abab),满足 a=8 b+ rb=5 r,请写出▱ ABCD  阶准菱形.

(2)操作与推理:

小明为了剪去一个菱形,进行了如下操作:如图2,把▱ ABCD沿 BE折叠(点 EAD上),使点 A落在 BC边上的点 F处,得到四边形 ABFE.请证明四边形 ABFE是菱形.

来源:2017年内蒙古通辽市中考数学试卷
  • 更新:2021-03-22
  • 题型:未知
  • 难度:未知

如图, AB O 的直径, BAC = 90 ° ,四边形 EBOC 是平行四边形, EB O 于点 D ,连接 CD 并延长交 AB 的延长线于点 F

(1)求证: CF O 的切线;

(2)若 F = 30 ° EB = 4 ,求图中阴影部分的面积(结果保留根号和 π ).

来源:2016年云南省昆明市中考数学试卷
  • 更新:2021-05-17
  • 题型:未知
  • 难度:未知

如图,在平行四边形 ABCD中,点 EFGH分别在边 ABBCCDDA上, AECGAHCF,且 EG平分∠ HEF

(1)求证:四边形 EFGH是菱形;

(2)若 EF=4,∠ HEF=60°,求 EG的长.

来源:2017年内蒙古巴彦淖尔市中考数学试卷
  • 更新:2021-03-22
  • 题型:未知
  • 难度:未知

如图,在 ABCD 中, DE AC 于点O,交BC于点E EG EC GF AD DE于点F,连接 FC ,点H为线段 AO 上一点,连接 HD HF

(1)判断四边形 GECF 的形状,并说明理由;

(2)当 DHF HAD 时,求证: AH CH EC AD

来源:2020年甘肃省兰州市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图, O为坐标原点,点 Bx轴上,四边形 OACB为平行四边形,cos∠ AOB 3 5 ,反比例函数 y k x ( k > 0 ) 在第一象限内的图象经过点 A,与 BC交于点 F

(1)若 OA=5, OB=6,求反比例函数解析式及 C点的坐标;

(2)若点 FBC的中点,且△ AOF的面积为6,求 OA的长.

来源:2016年内蒙古鄂尔多斯市中考数学试卷
  • 更新:2021-03-22
  • 题型:未知
  • 难度:未知

已知:如图, E F ABCD 对角线 AC 上的两点,且 AE = CF ,连接 BE DF ,求证: BE = DF

来源:2017年山东省淄博市中考数学试卷
  • 更新:2021-05-16
  • 题型:未知
  • 难度:未知

如图,四边形 ABCD 为平行四边形,连接 AC ,且 AC = 2 AB .请用尺规完成基本作图:作出 BAC 的角平分线与 BC 交于点 E .连接 BD AE 于点 F ,交 AC 于点 O ,猜想线段 BF 和线段 DF 的数量关系,并证明你的猜想.(尺规作图保留作图痕迹,不写作法)

来源:2021年重庆市中考数学试卷(B卷)
  • 更新:2021-08-17
  • 题型:未知
  • 难度:未知

如图是由边长为1的小正方形构成的 6 × 4 的网格,点 A B 均在格点上.

(1)在图1中画出以 AB 为边且周长为无理数的 ABCD ,且点 C 和点 D 均在格点上(画出一个即可).

(2)在图2中画出以 AB 为对角线的正方形 AEBF ,且点 E 和点 F 均在格点上.

来源:2021年浙江省宁波市中考数学试卷
  • 更新:2021-08-18
  • 题型:未知
  • 难度:未知

如图, AB O 的直径,过点 A O 的切线 AC ,点 P 是射线 AC 上的动点,连接 OP ,过点 B BD / / OP ,交 O 于点 D ,连接 PD

(1)求证: PD O 的切线;

(2)当四边形 POBD 是平行四边形时,求 APO 的度数.

来源:2021年内蒙古通辽市中考数学试卷
  • 更新:2021-08-19
  • 题型:未知
  • 难度:未知

ΔABC ΔAED 均为等腰三角形,且 BAC = EAD = 90 °

(1)如图(1),点 B DE 的中点,判定四边形 BEAC 的形状,并说明理由;

(2)如图(2),若点 G EC 的中点,连接 GB 并延长至点 F ,使 CF = CD

求证:① EB = DC

EBG = BFC

来源:2020年山东省泰安市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图, E ABCD 的边 CD 的中点,延长 AE BC 的延长线于点 F

(1)求证: ΔADE ΔFCE

(2)若 BAF = 90 ° BC = 5 EF = 3 ,求 CD 的长.

来源:2016年浙江省温州市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

如图, ABCD 的对角线 AC BD 相交于点 O EF 过点 O 且与 AD BC 分别相交于点 E F .求证: OE = OF

来源:2018年福建省中考数学试卷(A卷)
  • 更新:2021-05-12
  • 题型:未知
  • 难度:未知

初中数学平行四边形的性质解答题