初中数学

如图,四个全等的直角三角形拼成“赵爽弦图”,得到正方形 ABCD 与正方形 EFGH .连结 EG BD 相交于点 O BD HC 相交于点 P .若 GO = GP ,则 S 正方形 ABCD S 正方形 EFGH 的值是 (    )

A. 1 + 2 B. 2 + 2 C. 5 - 2 D. 15 4

来源:2020年浙江省金华市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图,已知 BC O 的直径,半径 OA BC ,点 D 在劣弧 AC 上(不与点 A ,点 C 重合), BD OA 交于点 E .设 AED = α AOD = β ,则 (    )

A. 3 α + β = 180 ° B. 2 α + β = 180 ° C. 3 α - β = 90 ° D. 2 α - β = 90 °

来源:2020年浙江省杭州市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

在数学探究活动中,敏敏进行了如下操作:如图,将四边形纸片 ABCD 沿过点 A 的直线折叠,使得点 B 落在 CD 上的点 Q 处.折痕为 AP ;再将 ΔPCQ ΔADQ 分别沿 PQ AQ 折叠,此时点 C D 落在 AP 上的同一点 R 处.请完成下列探究:

(1) PAQ 的大小为     

(2)当四边形 APCD 是平行四边形时, AB QR 的值为   

来源:2020年安徽省中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

O 中,弦 CD 与直径 AB 相交于点 P ABC = 63 °

(Ⅰ)如图①,若 APC = 100 ° ,求 BAD CDB 的大小;

(Ⅱ)如图②,若 CD AB ,过点 D O 的切线,与 AB 的延长线相交于点 E ,求 E 的大小.

来源:2020年天津市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图,四边形 ABCD 是菱形,点 H 为对角线 AC 的中点,点 E AB 的延长线上, CE AB ,垂足为 E ,点 F AD 的延长线上, CF AD ,垂足为 F

(1)若 BAD = 60 ° ,求证:四边形 CEHF 是菱形;

(2)若 CE = 4 ΔACE 的面积为16,求菱形 ABCD 的面积.

来源:2020年云南省中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图,四边形 ABCD 是菱形,点 H 为对角线 AC 的中点,点 E AB 的延长线上, CE AB ,垂足为 E ,点 F AD 的延长线上, CF AD ,垂足为 F

(1)若 BAD = 60 ° ,求证:四边形 CEHF 是菱形;

(2)若 CE = 4 ΔACE 的面积为16,求菱形 ABCD 的面积.

来源:2020年云南省中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

阅读与思考

如图是小宇同学的数学日记,请仔细阅读,并完成相应的任务.

× × × 日星期日

没有直角尺也能作出直角

今天,我在书店一本书上看到下面材料:木工师傅有一块如图①所示的四边形木板,他已经在木板上画出一条裁割线 AB ,现根据木板的情况,要过 AB 上的一点 C ,作出 AB 的垂线,用锯子进行裁割,然而手头没有直角尺,怎么办呢?

办法一:如图①,可利用一把有刻度的直尺在 AB 上量出 CD = 30 cm ,然后分别以 D C 为圆心,以 50 cm 40 cm 为半径画圆弧,两弧相交于点 E ,作直线 CE ,则 DCE 必为 90 °

办法二:如图②,可以取一根笔直的木棒,用铅笔在木棒上点出 M N 两点,然后把木棒斜放在木板上,使点 M 与点 C 重合,用铅笔在木板上将点 N 对应的位置标记为点 Q ,保持点 N 不动,将木棒绕点 N 旋转,使点 M 落在 AB 上,在木板上将点 M 对应的位置标记为点 R .然后将 RQ 延长,在延长线上截取线段 QS = MN ,得到点 S ,作直线 SC ,则 RCS = 90 °

我有如下思考:以上两种办法依据的是什么数学原理呢?我还有什么办法不用直角尺也能作出垂线呢?

任务:

(1)填空:“办法一”依据的一个数学定理是     

(2)根据“办法二”的操作过程,证明 RCS = 90 °

(3)①尺规作图:请在图③的木板上,过点 C 作出 AB 的垂线(在木板上保留作图痕迹,不写作法);

②说明你的作法所依据的数学定理或基本事实(写出一个即可).

来源:2020年山西省中考数学试卷
  • 更新:2021-05-25
  • 题型:未知
  • 难度:未知

问题呈现

如图1,在边长为1的正方形网格中,连接格点 D N E C DN EC 相交于点 P ,求 tan CPN 的值.

方法归纳

求一个锐角的三角函数值,我们往往需要找出(或构造出)一个直角三角形.观察发现问题中 CPN 不在直角三角形中,我们常常利用网格画平行线等方法解决此类问题,比如连接格点 M N ,可得 MN / / EC ,则 DNM = CPN ,连接 DM ,那么 CPN 就变换到 Rt Δ DMN 中.

问题解决

(1)直接写出图1中 tan CPN 的值为 2 

(2)如图2,在边长为1的正方形网格中, AN CM 相交于点 P ,求 cos CPN 的值;

思维拓展

(3)如图3, AB BC AB = 4 BC ,点 M AB 上,且 AM = BC ,延长 CB N ,使 BN = 2 BC ,连接 AN CM 的延长线于点 P ,用上述方法构造网格求 CPN 的度数.

来源:2018年江苏省扬州市中考数学试卷
  • 更新:2021-05-25
  • 题型:未知
  • 难度:未知

Rt Δ ABC 中, ACB = 90 ° CD AB D CE 平分 ACD AB E ,则下列结论一定成立的是 (    )

A. BC = EC B. EC = BE C. BC = BE D. AE = EC

来源:2018年江苏省扬州市中考数学试卷
  • 更新:2021-05-25
  • 题型:未知
  • 难度:未知

如图,四边形 ABCD 中, AC 平分 BAD ACD = ABC = 90 ° E F 分别为 AC CD 的中点, D = α ,则 BEF 的度数为  (用含 α 的式子表示).

来源:2018年江苏省泰州市中考数学试卷
  • 更新:2021-05-25
  • 题型:未知
  • 难度:未知

如图,在 Rt Δ ABC 中, AC = BC ACB = 90 ° ,点 D E 分别在 AC BC 上,且 CD = CE

(1)如图1,求证: CAE = CBD

(2)如图2, F BD 的中点,求证: AE CF

(3)如图3, F G 分别是 BD AE 的中点,若 AC = 2 2 CE = 1 ,求 ΔCGF 的面积.

来源:2018年浙江省台州市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

如图,已知在 ΔABC 中, BAC > 90 ° ,点 D BC 的中点,点 E AC 上,将 ΔCDE 沿 DE 折叠,使得点 C 恰好落在 BA 的延长线上的点 F 处,连接 AD ,则下列结论不一定正确的是 (    )

A. AE = EF B. AB = 2 DE

C. ΔADF ΔADE 的面积相等D. ΔADE ΔFDE 的面积相等

来源:2018年浙江省湖州市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

在探索“尺规三等分角”这个数学名题的过程中,曾利用了如图,该图中,四边形 ABCD 是矩形, E BA 延长线上一点, F CE 上一点, ACF = AFC FAE = FEA .若 ACB = 21 ° ,则 ECD 的度数是 (    )

A. 7 ° B. 21 ° C. 23 ° D. 24 °

来源:2017年浙江省金华市义乌市(绍兴市)中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

如图是一个由5张纸片拼成的平行四边形,相邻纸片之间互不重叠也无缝隙,其中两张等腰直角三角形纸片的面积都为 S 1 ,另两张直角三角形纸片的面积都为 S 2 ,中间一张正方形纸片的面积为 S 3 ,则这个平行四边形的面积一定可以表示为 (    )

A. 4 S 1 B. 4 S 2 C. 4 S 2 + S 3 D. 3 S 1 + 4 S 3

来源:2016年浙江省宁波市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

对于坐标平面内的点,现将该点向右平移1个单位,再向上平移2个单位,这种点的运动称为点 A 的斜平移,如点 P ( 2 , 3 ) 经1次斜平移后的点的坐标为 ( 3 , 5 ) ,已知点 A 的坐标为 ( 1 , 0 )

(1)分别写出点 A 经1次,2次斜平移后得到的点的坐标.

(2)如图,点 M 是直线 l 上的一点,点 A 关于点 M 的对称点为点 B ,点 B 关于直线 l 的对称点为点 C

①若 A B C 三点不在同一条直线上,判断 ΔABC 是否是直角三角形?请说明理由.

②若点 B 由点 A n 次斜平移后得到,且点 C 的坐标为 ( 7 , 6 ) ,求出点 B 的坐标及 n 的值.

来源:2016年浙江省金华市义乌市(绍兴市)中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

初中数学直角三角形的性质试题