初中数学

如图, AOB = 60 ° OA = OB ,动点 C 从点 O 出发,沿射线 OB 方向移动,以 AC 为边在右侧作等边 ΔACD ,连接 BD ,则 BD 所在直线与 OA 所在直线的位置关系是 (    )

A.平行B.相交

C.垂直D.平行、相交或垂直

来源:2018年广西玉林市中考数学试卷
  • 更新:2021-04-29
  • 题型:未知
  • 难度:未知

由6根钢管首尾顺次铰接而成六边形钢架 ABCDEF ,相邻两钢管可以转动.已知各钢管的长度为 AB = DE = 1 米, BC = CD = EF = FA = 2 米.(铰接点长度忽略不计)

(1)转动钢管得到三角形钢架,如图1,则点 A E 之间的距离是  米.

(2)转动钢管得到如图2所示的六边形钢架,有 A = B = C = D = 120 ° ,现用三根钢条连接顶点使该钢架不能活动,则所用三根钢条总长度的最小值是  米.

来源:2016年浙江省金华市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

如图, BD O 的直径,弦 BC OA 相交于点 E AF O 相切于点 A ,交 DB 的延长线于点 F F = 30 ° BAC = 120 ° BC = 8

(1)求 ADB 的度数;

(2)求 AC 的长度.

来源:2019年广西贺州市中考数学试卷
  • 更新:2021-04-29
  • 题型:未知
  • 难度:未知

如图,四边形 ABCD 为矩形, G 是对角线 BD 的中点.连接 GC 并延长至 F ,使 CF = GC ,以 DC CF 为邻边作菱形 DCFE ,连接 CE

(1)判断四边形 CEDG 的形状,并证明你的结论.

(2)连接 DF ,若 BC = 3 ,求 DF 的长.

来源:2020年四川省德阳市中考数学试卷
  • 更新:2021-05-20
  • 题型:未知
  • 难度:未知

如图,矩形 ABCD 的对角线 AC BD 相交于点 O ,点 E F BD 上, BE = DF

(1)求证: AE = CF

(2)若 AB = 6 COD = 60 ° ,求矩形 ABCD 的面积.

来源:2017年广西北海市中考数学试卷
  • 更新:2021-04-27
  • 题型:未知
  • 难度:未知

如图,菱形 OABC 的顶点 A B C O 上,过点 B O 的切线交 OA 的延长线于点 D .若 O 的半径为1,则 BD 的长为 (    )

A.1B.2C. 2 D. 3

来源:2020年浙江省温州市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

已知:点P是平行四边形ABCD对角线AC所在直线上的一个动点(点P不与点AC重合),分别过点AC向直线BD作垂线,垂足分别为点EF,点OAC的中点.

(1)当点P与点O重合时如图1,易证 OE OF (不需证明)

(2)直线BP绕点B逆时针方向旋转,当 OFE 30 ° 时,如图2、图3的位置,猜想线段CFAEOE之间有怎样的数量关系?请写出你对图2、图3的猜想,并选择一种情况给予证明.

来源:2016年黑龙江省七台河市中考数学试卷
  • 更新:2021-04-16
  • 题型:未知
  • 难度:未知

问题背景:如图1,等腰 ΔABC 中, AB = AC BAC = 120 ° ,作 AD BC 于点 D ,则 D BC 的中点, BAD = 1 2 BAC = 60 ° ,于是 BC AB = 2 BD AB = 3

迁移应用:如图2, ΔABC ΔADE 都是等腰三角形, BAC = DAE = 120 ° D E C 三点在同一条直线上,连接 BD

①求证: ΔADB ΔAEC

②请直接写出线段 AD BD CD 之间的等量关系式;

拓展延伸:如图3,在菱形 ABCD 中, ABC = 120 ° ,在 ABC 内作射线 BM ,作点 C 关于 BM 的对称点 E ,连接 AE 并延长交 BM 于点 F ,连接 CE CF

①证明 ΔCEF 是等边三角形;

②若 AE = 5 CE = 2 ,求 BF 的长.

来源:2017年四川省成都市中考数学试卷
  • 更新:2021-05-20
  • 题型:未知
  • 难度:未知

如图,在 Rt Δ ABC 中, ACB = 90 ° A = 30 ° D E F 分别为 AB AC AD 的中点,若 BC = 2 ,则 EF 的长度为 (    )

A. 1 2 B.1C. 3 2 D. 3

来源:2018年四川省南充市中考数学试卷
  • 更新:2021-05-23
  • 题型:未知
  • 难度:未知

如图, O ΔOAB 的边 AB 相切,切点为 B .将 ΔOAB 绕点 B 按顺时针方向旋转得到△ O ' A ' B ,使点 O ' 落在 O 上,边 A ' B 交线段 AO 于点 C .若 A ' = 25 ° ,则 OCB =

    度.

来源:2021年浙江省温州市中考数学试卷
  • 更新:2021-08-17
  • 题型:未知
  • 难度:未知

已知:如图,矩形 ABCD 的对角线 AC BD 相交于点 O BOC = 120 ° AB = 2

(1)求矩形对角线的长;

(2)过 O OE AD 于点 E ,连结 BE .记 ABE = α ,求 tan α 的值.

来源:2021年浙江省金华市中考数学试卷
  • 更新:2021-08-18
  • 题型:未知
  • 难度:未知

如图,点 O 是半圆圆心, BE 是半圆的直径,点 A D 在半圆上,且 AD / / BO ABO = 60 ° AB = 8 ,过点 D DC BE 于点 C ,则阴影部分的面积是      

来源:2020年山东省泰安市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图,点 A B C 都在 O 上, OC OB ,点 A 在劣弧 BC ̂ 上,且 OA = AB ,则 ABC =   

来源:2018年江苏省无锡市中考数学试卷
  • 更新:2021-05-25
  • 题型:未知
  • 难度:未知

如图,在四边形 ABCD 中, DAB = 90 ° DB = DC ,点 E F 分别为 DB BC 的中点,连接 AE EF AF

(1)求证: AE = EF

(2)当 AF = AE 时,设 ADB = α CDB = β ,求 α β 之间的数量关系式.

来源:2018年湖北省鄂州市中考数学试卷
  • 更新:2021-05-22
  • 题型:未知
  • 难度:未知

操作:“如图1, P 是平面直角坐标系中一点 ( x 轴上的点除外),过点 P PC x 轴于点 C ,点 C 绕点 P 逆时针旋转 60 ° 得到点 Q .”我们将此由点 P 得到点 Q 的操作称为点的 T 变换.

(1)点 P ( a , b ) 经过 T 变换后得到的点 Q 的坐标为   ;若点 M 经过 T 变换后得到点 N ( 6 , - 3 ) ,则点 M 的坐标为       

(2) A 是函数 y = 3 2 x 图象上异于原点 O 的任意一点,经过 T 变换后得到点 B

①求经过点 O ,点 B 的直线的函数表达式;

②如图2,直线 AB y 轴于点 D ,求 ΔOAB 的面积与 ΔOAD 的面积之比.

来源:2017年江苏省无锡市中考数学试卷
  • 更新:2021-05-12
  • 题型:未知
  • 难度:未知

初中数学等边三角形的判定与性质试题