如图,在四边形 ABCD 中, ∠ DAB = 90 ° , DB = DC ,点 E 、 F 分别为 DB 、 BC 的中点,连接 AE 、 EF 、 AF .
(1)求证: AE = EF ;
(2)当 AF = AE 时,设 ∠ ADB = α , ∠ CDB = β ,求 α , β 之间的数量关系式.
计算 2 a 2 · 3 a 4 的结果是 ( )
A. 5 a 6 B. 5 a 8 C. 6 a 6 D. 6 a 8
用三个相同的正方体搭成如图所示的立体图形,则该立体图形的主视图是 ( )
A.B.C.D.
计算 1 - 3 的结果是 ( )
A.2B. - 2 C.4D. - 4
如图1,矩形 DEFG 中, DG = 2 , DE = 3 , Rt Δ ABC 中, ∠ ACB = 90 ° , CA = CB = 2 , FG , BC 的延长线相交于点 O ,且 FG ⊥ BC , OG = 2 , OC = 4 .将 ΔABC 绕点 O 逆时针旋转 α ( 0 ° ⩽ α < 180 ° ) 得到△ A ' B ' C ' .
(1)当 α = 30 ° 时,求点 C ' 到直线 OF 的距离.
(2)在图1中,取 A ' B ' 的中点 P ,连结 C ' P ,如图2.
①当 C ' P 与矩形 DEFG 的一条边平行时,求点 C ' 到直线 DE 的距离.
②当线段 A ' P 与矩形 DEFG 的边有且只有一个交点时,求该交点到直线 DG 的距离的取值范围.
如图1,排球场长为 18 m ,宽为 9 m ,网高为 2 . 24 m ,队员站在底线 O 点处发球,球从点 O 的正上方 1 . 9 m 的 C 点发出,运动路线是抛物线的一部分,当球运动到最高点 A 时,高度为 2 . 88 m ,即 BA = 2 . 88 m ,这时水平距离 OB = 7 m ,以直线 OB 为 x 轴,直线 OC 为 y 轴,建立平面直角坐标系,如图2.
(1)若球向正前方运动(即 x 轴垂直于底线),求球运动的高度 y ( m ) 与水平距离 x ( m ) 之间的函数关系式(不必写出 x 取值范围).并判断这次发球能否过网?是否出界?说明理由.
(2)若球过网后的落点是对方场地①号位内的点 P (如图1,点 P 距底线 1 m ,边线 0 . 5 m ) ,问发球点 O 在底线上的哪个位置?(参考数据: 2 取 1 . 4 )