初中数学

如图,在 Rt Δ ABC 中, BAC = 90 ° AB = 2 .将 ΔABC 绕点 A 按顺时针方向旋转至

A B 1 C 1 的位置,点 B 1 恰好落在边 BC 的中点处,则 C C 1 的长为   

来源:2020年四川省眉山市中考数学试卷
  • 更新:2021-05-21
  • 题型:未知
  • 难度:未知

如图,在菱形 ABCD 中,过点 B BE AD BF CD ,垂足分别为点 E F ,延长 BD G ,使得 DG = BD ,连接 EG FG ,若 AE = DE ,则 EG AB =   

来源:2016年浙江省丽水市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

如图,在 Rt Δ ABC 中, ACB = 90 ° A = 30 ° BC = 1 ,以边 AC 上一点 O 为圆心, OA 为半径的 O 经过点 B

(1)求 O 的半径;

(2)点 P 为劣弧 AB 中点,作 PQ AC ,垂足为 Q ,求 OQ 的长;

(3)在(2)的条件下,连接 PC ,求 tan PCA 的值.

来源:2019年江苏省南通市中考数学试卷
  • 更新:2021-05-21
  • 题型:未知
  • 难度:未知

如图,在 Rt Δ ABC 中, ACB = 90 ° A = 30 ° AB = 4 CD AB 于点 D E AB 的中点,则 DE 的长为 (    )

A.

1

B.

2

C.

3

D.

4

来源:2021年新疆生产建设兵团中考数学试卷
  • 更新:2021-08-18
  • 题型:未知
  • 难度:未知

如图,在菱形 ABCD 中, DAB = 60 ° AB = 2 ,则菱形 ABCD 的面积为       

来源:2017年新疆乌鲁木齐市中考数学试卷
  • 更新:2021-05-20
  • 题型:未知
  • 难度:未知

由6根钢管首尾顺次铰接而成六边形钢架 ABCDEF ,相邻两钢管可以转动.已知各钢管的长度为 AB = DE = 1 米, BC = CD = EF = FA = 2 米.(铰接点长度忽略不计)

(1)转动钢管得到三角形钢架,如图1,则点 A E 之间的距离是  米.

(2)转动钢管得到如图2所示的六边形钢架,有 A = B = C = D = 120 ° ,现用三根钢条连接顶点使该钢架不能活动,则所用三根钢条总长度的最小值是  米.

来源:2016年浙江省金华市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

如图,四边形 ABCD 为矩形, G 是对角线 BD 的中点.连接 GC 并延长至 F ,使 CF = GC ,以 DC CF 为邻边作菱形 DCFE ,连接 CE

(1)判断四边形 CEDG 的形状,并证明你的结论.

(2)连接 DF ,若 BC = 3 ,求 DF 的长.

来源:2020年四川省德阳市中考数学试卷
  • 更新:2021-05-20
  • 题型:未知
  • 难度:未知

如图,菱形 OABC 的顶点 A B C O 上,过点 B O 的切线交 OA 的延长线于点 D .若 O 的半径为1,则 BD 的长为 (    )

A.1B.2C. 2 D. 3

来源:2020年浙江省温州市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

问题背景:如图1,等腰 ΔABC 中, AB = AC BAC = 120 ° ,作 AD BC 于点 D ,则 D BC 的中点, BAD = 1 2 BAC = 60 ° ,于是 BC AB = 2 BD AB = 3

迁移应用:如图2, ΔABC ΔADE 都是等腰三角形, BAC = DAE = 120 ° D E C 三点在同一条直线上,连接 BD

①求证: ΔADB ΔAEC

②请直接写出线段 AD BD CD 之间的等量关系式;

拓展延伸:如图3,在菱形 ABCD 中, ABC = 120 ° ,在 ABC 内作射线 BM ,作点 C 关于 BM 的对称点 E ,连接 AE 并延长交 BM 于点 F ,连接 CE CF

①证明 ΔCEF 是等边三角形;

②若 AE = 5 CE = 2 ,求 BF 的长.

来源:2017年四川省成都市中考数学试卷
  • 更新:2021-05-20
  • 题型:未知
  • 难度:未知

如图,在 Rt Δ ABC 中, ACB = 90 ° A = 30 ° D E F 分别为 AB AC AD 的中点,若 BC = 2 ,则 EF 的长度为 (    )

A. 1 2 B.1C. 3 2 D. 3

来源:2018年四川省南充市中考数学试卷
  • 更新:2021-05-23
  • 题型:未知
  • 难度:未知

如图, O ΔOAB 的边 AB 相切,切点为 B .将 ΔOAB 绕点 B 按顺时针方向旋转得到△ O ' A ' B ,使点 O ' 落在 O 上,边 A ' B 交线段 AO 于点 C .若 A ' = 25 ° ,则 OCB =

    度.

来源:2021年浙江省温州市中考数学试卷
  • 更新:2021-08-17
  • 题型:未知
  • 难度:未知

已知:如图,矩形 ABCD 的对角线 AC BD 相交于点 O BOC = 120 ° AB = 2

(1)求矩形对角线的长;

(2)过 O OE AD 于点 E ,连结 BE .记 ABE = α ,求 tan α 的值.

来源:2021年浙江省金华市中考数学试卷
  • 更新:2021-08-18
  • 题型:未知
  • 难度:未知

如图,点 O 是半圆圆心, BE 是半圆的直径,点 A D 在半圆上,且 AD / / BO ABO = 60 ° AB = 8 ,过点 D DC BE 于点 C ,则阴影部分的面积是      

来源:2020年山东省泰安市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图,点 A B C 都在 O 上, OC OB ,点 A 在劣弧 BC ̂ 上,且 OA = AB ,则 ABC =   

来源:2018年江苏省无锡市中考数学试卷
  • 更新:2021-05-25
  • 题型:未知
  • 难度:未知

如图,在四边形 ABCD 中, DAB = 90 ° DB = DC ,点 E F 分别为 DB BC 的中点,连接 AE EF AF

(1)求证: AE = EF

(2)当 AF = AE 时,设 ADB = α CDB = β ,求 α β 之间的数量关系式.

来源:2018年湖北省鄂州市中考数学试卷
  • 更新:2021-05-22
  • 题型:未知
  • 难度:未知

初中数学等边三角形的判定与性质试题