如图,在 中, , .将 绕点 按顺时针方向旋转至
△ 的位置,点 恰好落在边 的中点处,则 的长为 .
如图,在菱形 中,过点 作 , ,垂足分别为点 , ,延长 至 ,使得 ,连接 , ,若 ,则 .
如图,在 中, , , ,以边 上一点 为圆心, 为半径的 经过点 .
(1)求 的半径;
(2)点 为劣弧 中点,作 ,垂足为 ,求 的长;
(3)在(2)的条件下,连接 ,求 的值.
如图,在 中, , , , 于点 , 是 的中点,则 的长为
A. |
1 |
B. |
2 |
C. |
3 |
D. |
4 |
由6根钢管首尾顺次铰接而成六边形钢架 ,相邻两钢管可以转动.已知各钢管的长度为 米, 米.(铰接点长度忽略不计)
(1)转动钢管得到三角形钢架,如图1,则点 , 之间的距离是 米.
(2)转动钢管得到如图2所示的六边形钢架,有 ,现用三根钢条连接顶点使该钢架不能活动,则所用三根钢条总长度的最小值是 米.
如图,四边形 为矩形, 是对角线 的中点.连接 并延长至 ,使 ,以 , 为邻边作菱形 ,连接 .
(1)判断四边形 的形状,并证明你的结论.
(2)连接 ,若 ,求 的长.
如图,菱形 的顶点 , , 在 上,过点 作 的切线交 的延长线于点 .若 的半径为1,则 的长为
A.1B.2C. D.
问题背景:如图1,等腰 中, , ,作 于点 ,则 为 的中点, ,于是 ;
迁移应用:如图2, 和 都是等腰三角形, , , , 三点在同一条直线上,连接 .
①求证: ;
②请直接写出线段 , , 之间的等量关系式;
拓展延伸:如图3,在菱形 中, ,在 内作射线 ,作点 关于 的对称点 ,连接 并延长交 于点 ,连接 , .
①证明 是等边三角形;
②若 , ,求 的长.
如图,在 中, , , , , 分别为 , , 的中点,若 ,则 的长度为
A. B.1C. D.
如图, 与 的边 相切,切点为 .将 绕点 按顺时针方向旋转得到△ ,使点 落在 上,边 交线段 于点 .若 ,则
度.
已知:如图,矩形 的对角线 , 相交于点 , , .
(1)求矩形对角线的长;
(2)过 作 于点 ,连结 .记 ,求 的值.
如图,点 是半圆圆心, 是半圆的直径,点 , 在半圆上,且 , , ,过点 作 于点 ,则阴影部分的面积是 .