数学活动课上,某学习小组对有一内角为 的平行四边形 进行探究:将一块含 的直角三角板如图放置在平行四边形 所在平面内旋转,且 角的顶点始终与点 重合,较短的直角边和斜边所在的两直线分别交线段 , 于点 , (不包括线段的端点).
(1)初步尝试
如图1,若 ,求证:① ,② ;
(2)类比发现
如图2,若 ,过点 作 于点 ,求证: ;
(3)深入探究
如图3,若 ,探究得: 的值为常数 ,则 .
如图,在 中, , , .动点 从 点出发,沿 方向以每秒5个单位长度的速度向 点匀速运动,动点 从 点同时出发,以相同的速度沿 方向向 点匀速运动,当点 运动到 点时, 、 两点同时停止运动,以 为边作正 、 、 按逆时针排序),以 为边在 上方作正 ,设点 运动时间为 秒.
(1)求 的值;
(2)当 与 的面积满足 时,求 的值;
(3)当 为何值时, 的某个顶点 点除外)落在 的边上.
如图①,在四边形 中, 于点 , ,点 为 中点, 为线段 上的点,且 .
(1)求证: 平分 ;
(2)若 ,连接 ,当四边形 为平行四边形时,求线段 的长;
(3)如图②,若点 为 的中点,连接 、 ,求证: .
如图1,在平面直角坐标系中,直线 分别与 轴、 轴交于点 , , ,等边 的顶点 与原点 重合, 边落在 轴正半轴上,点 恰好落在线段 上,将等边 从图1的位置沿 轴正方向以每秒1个单位长度的速度平移,边 , 分别与线段 交于点 , (如图2所示),设 平移的时间为 .
(1)等边 的边长为 ;
(2)在运动过程中,当 时, 垂直平分 ;
(3)若在 开始平移的同时.点 从 的顶点 出发.以每秒2个单位长度的速度沿折线 运动.当点 运动到 时即停止运动. 也随之停止平移.
①当点 在线段 上运动时,若 与 相似.求 的值;
②当点 在线段 上运动时,设 ,求 与 的函数关系式,并求出 的最大值及此时点 的坐标.
如图, 是等边三角形, 是等腰直角三角形, , 于点 ,连 分别交 , 于点 , ,过点 作 交 于点 .则下列结论:① ;② ;③ ;④ ;⑤ .其中正确结论的个数为
A.5B.4C.3D.2
在四边形 中, ,对角线 平分 .
(1)如图1,若 ,且 ,试探究边 、 与对角线 的数量关系并说明理由.
(2)如图2,若将(1)中的条件“ ”去掉,(1)中的结论是否成立?请说明理由.
(3)如图3,若 ,探究边 、 与对角线 的数量关系并说明理由.
如图, 是反比例函数 在第一象限内的图象上一点,以 为顶点作等边 ,使 落在 轴上,则 的面积为
A. B. C. D.
如图, 是反比例函数 在第一象限内的图象上一点,以 为顶点作等边 ,使 落在 轴上,则 的面积为
A. B. C. D.
已知:如图,在平面直角坐标系 中,等边 的边长为6,点 在边 上,点 在边 上,且 ,反比例函数 的图象恰好经过点 和点 ,则 的值为
A. B. C. D.
如图, 和 都是等边三角形,点 、 、 三点在同一直线上,连接 , , 交 于点 .
(1)若 ,求证: ;
(2)若 , .
①求 的值;②求 的长.