如图, 是 的直径,点 ,点 在 上, , 与 相交于点 , 与 相切于点 ,与 延长线相交于点 .
(1)求证: .
(2)若 , ,求 的半径.
如图,在 中,点 为 的中点,弦 、 互相垂直,垂足为 , 分别与 、 相交于点 、 ,连接 、 .
(1)求证: 为 的中点.
(2)若 的半径为8, 的度数为 ,求线段 的长.
初步尝试
(1)如图①,在三角形纸片中,,将折叠,使点与点重合,折痕为,则与的数量关系为 ;
思考说理
(2)如图②,在三角形纸片中,,,将折叠,使点与点重合,折痕为,求的值;
拓展延伸
(3)如图③,在三角形纸片中,,,,将沿过顶点的直线折叠,使点落在边上的点处,折痕为.
①求线段的长;
②若点是边的中点,点为线段上的一个动点,将沿折叠得到△,点的对应点为点,与交于点,求的取值范围.
如图,在 中, , 平分 交 于点 ,过点 和点 的圆,圆心 在线段 上, 交 于点 ,交 于点 .
(1)判断 与 的位置关系,并说明理由;
(2)若 , ,求 的长.
如图,在 中, ,点 在 上,以 为半径的半圆 交 于点 ,交 于点 ,过点 作半圆 的切线 ,交 于点 .
(1)求证: ;
(2)若 , , ,求半圆 的半径长.
如图,在 中, ,以斜边 上的中线 为直径作 ,与 交于点 ,与 的另一个交点为 ,过 作 ,垂足为 .
(1)求证: 是 的切线;
(2)若 的直径为5, ,求 的长.
如图1, 是 的直径,直线 与 相切于点 ,直线 与 相切于点 ,点 (异于点 在 上,点 在 上,且 ,延长 与 相交于点 ,连接 并延长交 于点 .
(1)求证: 是 的切线;
(2)求证: ;
(3)如图2,连接 并延长与 分别相交于点 、 ,连接 .若 , ,求 .
如图,为的直径,四边形内接于,对角线,交于点,的切线交的延长线于点,切点为,且.
(1)求证:;
(2)若,,求的值.
已知抛物线经过点和点,与轴交于另一点,顶点为.
(1)求抛物线的解析式,并写出顶点的坐标;
(2)如图,点,分别在线段,上(点不与点,重合),且,,直接写出线段的长.
如图,在中,,为的中点,以为直径的分别交,于点,两点,过点作于点.
(1)试判断与的位置关系,并说明理由.
(2)若,,求的长.
如图是由边长为1的小正方形构成的网格,每个小正方形的顶点叫做格点.四边形的顶点在格点上,点是边与网格线的交点.请选择适当的格点,用无刻度的直尺在网格中完成下列画图,保留连线的痕迹,不要求说明理由.
(1)如图1,过点画线段,使,且.
(2)如图1,在边上画一点,使.
(3)如图2,过点画线段,使,且.
如图,在中,,以为直径的交于点,过点作的切线交于点,连接.
(1)求证:是等腰三角形;
(2)求证:.
如图,是的直径,是上一点,过点作,交的延长线于,交于点,是的中点,连接.
(1)求证:是的切线.
(2)若,求证:.
如图,在中,是边上的高,是边上的中线,且.求证:
(1)点在的垂直平分线上;
(2).