如图,在△ ABC中, BD、 CE分别是 AC、 AB上的中线, BD与 CE相交于点 O.
(1)利用尺规作图取线段 CO的中点.(保留作图痕迹,不写作法);
(2)猜想 CO与 OE的长度有什么关系,并说明理由.
已知: AC是▱ ABCD的对角线.
(1)用直尺和圆规作出线段 AC的垂直平分线,与 AD相交于点 E,连接 CE.(保留作图痕迹,不写作法);
(2)在(1)的条件下,若 AB=3, BC=5,求△ DCE的周长.
如图,在中,,点在上,以为半径的交于点,的垂直平分线交于点,交于点,连接.
(1)判断直线与的位置关系,并说明理由;
(2)若,,,求线段的长.
如图,在 中, .
(1)作边 的垂直平分线 ,与 , 分别相交于点 , (用尺规作图,保留作图痕迹,不要求写作法);
(2)在(1)的条件下,连接 ,若 ,求 的度数.
如图,在矩形ABCD中,AB=10,AD=6,点M为AB上的一动点,将矩形ABCD沿某一直线对折,使点C与点M重合,该直线与AB(或BC)、CD(或DA)分别交于点P、Q
(1)用直尺和圆规在图甲中画出折痕所在直线(不要求写画法,但要求保留作图痕迹)
(2)如果PQ与AB、CD都相交,试判断△MPQ的形状并证明你的结论;
(3)设AM=x,d为点M到直线PQ的距离,y=d2,
①求y关于x的函数解析式,并指出x的取值范围;
②当直线PQ恰好通过点D时,求点M到直线PQ的距离.
如图,在矩形 中,对角线 的垂直平分线分别与边 和边 的延长线交于点 , ,与边 交于点 ,垂足为点 .
(1)求证: ;
(2)若 , ,请直接写出 的长为 .
如图,已知 是锐角三角形 .
(1)请在图1中用无刻度的直尺和圆规作图:作直线 ,使 上的各点到 、 两点的距离相等;设直线 与 、 分别交于点 、 ,作一个圆,使得圆心 在线段 上,且与边 、 相切;(不写作法,保留作图痕迹)
(2)在(1)的条件下,若 , ,则 的半径为 .
如图,在中,是边上一点,且.
(1)尺规作图(保留作图痕迹,不写作法)
①作的角平分线交于点;
②作线段的垂直平分线交于点.
(2)连接,直接写出线段和的数量关系及位置关系.
请仅用无刻度的直尺完成下列画图,不写画法,保留画图痕迹.
(1)如图①,四边形中,,,画出四边形的对称轴;
(2)如图②,四边形中,,,画出边的垂直平分线.
如图,是菱形的对角线,,
(1)请用尺规作图法,作的垂直平分线,垂足为,交于;(不要求写作法,保留作图痕迹)
(2)在(1)条件下,连接,求的度数.
如图,点和点在内部.
(1)请你作出点,使点到点和点的距离相等,且到两边的距离也相等(保留作图痕迹,不写作法);
(2)请说明作图理由.
如图,四边形是矩形.
(1)用尺规作线段的垂直平分线,交于点,交于点(不写作法,保留作图痕迹);
(2)若,,求的长.
已知二次函数的图象过点,点与不重合)是图象上的一点,直线过点且平行于轴.于点,点.
(1)求二次函数的解析式;
(2)求证:点在线段的中垂线上;
(3)设直线交二次函数的图象于另一点,于点,线段的中垂线交于点,求的值;
(4)试判断点与以线段为直径的圆的位置关系.