如图,在中,,,.
(1)尺规作图:不写作法,保留作图痕迹.
①作的平分线,交斜边于点;
②过点作的垂线,垂足为点.
(2)在(1)作出的图形中,求的长.
如图,在中,.
(1)已知线段的垂直平分线与边交于点,连接,求证:.
(2)以点为圆心,线段的长为半径画弧,与边交于点,连接.若,求的度数.
在中,平分交于点.
(1)如图1,若,,求的面积;
(2)如图2,过点作,交的延长线于点,分别交,于点,,且.求证:.
在 中, , ,点 是 上一点,连接 ,过点 作 ,在 上取点 ,连接 .延长 至 ,使 ,连接 , ,且 .
(1)若 ,求 的长;
(2)如图1,当点 在 上时,求证: ;
(3)如图2,当点 在 的垂直平分线上时,直接写出 的值.
已知:如图,、是的两条弦,且,是延长线上一点,联结并延长交于点,联结并延长交于点.
(1)求证:;
(2)如果,求证:四边形是菱形.
已知在平面直角坐标系中(如图),已知抛物线经过点,对称轴是直线,顶点为.
(1)求这条抛物线的表达式和点的坐标;
(2)点在对称轴上,且位于顶点上方,设它的纵坐标为,联结,用含的代数式表示的余切值;
(3)将该抛物线向上或向下平移,使得新抛物线的顶点在轴上.原抛物线上一点平移后的对应点为点,如果,求点的坐标.
问题发现
(1)如图(1),四边形 中,若 , ,则线段 , 的位置关系为 ;
拓展探究
(2)如图(2),在 中,点 为斜边 的中点,分别以 , 为底边,在 外部作等腰三角形 和等腰三角形 ,连接 , ,分别交 , 于点 , ,试猜想四边形 的形状,并说明理由;
解决问题
(3)如图(3),在正方形 中, ,以点 为旋转中心将正方形 旋转 ,得到正方形 ,请直接写出 的长度.
如图,已知的中垂线交于点,交于点,有下面3个结论:
①是等腰三角形;
②∽;
③点D是线段AC的黄金分割点.
请你从以上结论中只选一个加以证明
如图,已知△ABC,用直尺(没有刻度)和圆规在平面上求作一个点P,使P到∠A两边的距离相等,且PA=PB.(不要求写作法,但要保留作图痕迹)
画图、证明:如图,∠AOB=90°,点C、D分别在OA、OB上.
(1)尺规作图(不写作法,保留作图痕迹):
作∠AOB的平分线OP;作线段CD的垂直平分线EF,分别与CD、OP相交于E、F;连接OE、CF、DF.
(2)在所画图中,线段OE与CD之间有怎样的数量关系,线段DF与CF之间有怎样的数量关系,并说明理由.
如图所示,要在公园(四边形ABCD)中建造一座音乐喷泉,喷泉位置应符合如下要求:
(1)到公园两个出入口A、C的距离相等;
(2)到公园两边围墙AB、AD的距离相等.
请你用尺规作图的方法确定喷泉的位置P.(不必写作法,但要保留作图痕迹)