背景:一次小组合作探究课上,小明将两个正方形按如图所示的位置摆放(点 、 、 在同一条直线上),发现 且 .
小组讨论后,提出了下列三个问题,请你帮助解答:
(1)将正方形 绕点 按逆时针方向旋转(如图 ,还能得到 吗?若能,请给出证明;若不能,请说明理由;
(2)把背景中的正方形分别改成菱形 和菱形 ,将菱形 绕点 按顺时针方向旋转(如图 ,试问当 与 的大小满足怎样的关系时,背景中的结论 仍成立?请说明理由;
(3)把背景中的正方形分别改写成矩形 和矩形 ,且 , , ,将矩形 绕点 按顺时针方向旋转(如图 ,连接 , .小组发现:在旋转过程中, 的值是定值,请求出这个定值.
正方形 的边长为 ,点 、 分别是线段 、 上的动点,连接 并延长,交边 于 ,过 作 ,垂足为 ,交边 于点 .
(1)如图1,若点 与点 重合,求证: ;
(2)如图2,若点 从点 出发,以 的速度沿 向点 运动,同时点 从点 出发,以 的速度沿 向点 运动,运动时间为 .
①设 ,求 关于 的函数表达式;
②当 时,连接 ,求 的长.
如图1,在四边形 中, , , 是 的直径, 平分 .
(1)求证:直线 与 相切;
(2)如图2,记(1)中的切点为 , 为优弧 上一点, , .求 的值.
如图, 是 的边 的中点,延长 交 的延长线于点 .
(1)求证: .
(2)若 , , ,求 的长.
已知:在矩形中,,分别是边,上的点,过点作的垂线交于点,以为直径作半圆.
(1)填空:点 (填“在”或“不在” 上;当时,的值是 ;
(2)如图1,在中,当时,求证:;
(3)如图2,当的顶点是边的中点时,求证:;
(4)如图3,点在线段的延长线上,若,连接交于点,连接,当时,,,求的值.
如图所示,在平面直角坐标系中, 为坐标原点,且 是等腰直角三角形, ,点 .
(1)求点 的坐标;
(2)求经过 、 、 三点的抛物线的函数表达式;
(3)在(2)所求的抛物线上,是否存在一点 ,使四边形 的面积最大?若存在,求出点 的坐标;若不存在,请说明理由.
如图,在正方形 中,连接 ,点 是 的中点,若 、 是边 上的两点,连接 、 ,并分别延长交边 于两点 、 ,则图中的全等三角形共有
A. |
2对 |
B. |
3对 |
C. |
4对 |
D. |
5对 |
如图,已知是的直径,,为圆上一点,且,连接,,,与交于点.
(1)求证:为的切线;
(2)若,求的值.