如图,点 是 的边 的中点,连结 并延长,交 的延长线于点 .
(1)若 的长为2,求 的长.
(2)若 ,试添加一个条件,并写出 的度数.
如右图,在 中, 、 分别是 、 延长线上的点,且 ,连接 交 、 于点 、 .求证: .
如图,直线 与 轴交于点 ,与 轴交于点 .将线段 先向右平移1个单位长度、再向上平移 个单位长度,得到对应线段 ,反比例函数 的图象恰好经过 、 两点,连接 、 .
(1)求 和 的值;
(2)求反比例函数的表达式及四边形 的面积;
(3)点 在 轴正半轴上,点 是反比例函数 的图象上的一个点,若 是以 为直角边的等腰直角三角形时,求所有满足条件的点 的坐标.
在四边形 中, ,对角线 平分 .
(1)如图1,若 ,且 ,试探究边 、 与对角线 的数量关系并说明理由.
(2)如图2,若将(1)中的条件“ ”去掉,(1)中的结论是否成立?请说明理由.
(3)如图3,若 ,探究边 、 与对角线 的数量关系并说明理由.
如图,在正方形 中,点 在 边的延长线上,点 在 边的延长线上,且 ,连接 和 相交于点 .
求证: .
如图,在 中,点 是边 的中点,连结 并延长到点 ,使 ,连结 .
(1)求证: ;
(2)若 的面积为5,求 的面积.
正方形 的边长为1,点 是 边上的一个动点(与 , 不重合),以 为顶点在 所在直线的上方作 .
(1)当 经过点 时,
①请直接填空: (可能,不可能)过 点;(图1仅供分析)
②如图2,在 上截取 ,过 点作 垂直于直线 ,垂足为点 ,作 于 ,求证:四边形 为正方形.
(2)当 不过点 时,设 交边 于 ,且 .在 上存在点 ,过 点作 垂直于直线 ,垂足为点 ,使得 ,连接 ,求四边形 的最大面积.
如图,四边形 内接于圆, ,对角线 平分 .
(1)求证: 是等边三角形;
(2)过点 作 交 的延长线于点 ,若 , ,求 的面积.
如图,在 中, , , .
(1)求 边上的高线长.
(2)点 为线段 的中点,点 在边 上,连结 ,沿 将 折叠得到 .
①如图2,当点 落在 上时,求 的度数.
②如图3,连结 ,当 时,求 的长.
如图,在 中, , 为 边上的一点,以 为直径的 交 于点 ,交 于点 ,过点 作 交 于点 ,交 于点 ,过点 的弦 交 于点 不是直径),点 为弦 的中点,连结 , 恰好为 的切线.
(1)求证: 是 的切线.
(2)求证: .
(3)若 , ,求四边形 的面积.
如图,在 中, , 与 相切于点 ,过点 作 的垂线交 的延长线于点 ,交 于点 ,连结 .
(1)求证: 是 的切线.
(2)若 , ,求 的长.