初中数学

如图, AB AC 分别是 O 的直径和弦, OD AC 于点 D .过点 A O 的切线与 OD 的延长线交于点 P PC AB 的延长线交于点 F

(1)求证: PC O 的切线;

(2)若 ABC = 60 ° AB = 10 ,求线段 CF 的长.

来源:2018年江苏省宿迁市中考数学试卷
  • 更新:2021-05-25
  • 题型:未知
  • 难度:未知

如图,在 ABCD 中,点 E F 分别在边 CB AD 的延长线上,且 BE = DF EF 分别与 AB CD 交于点 G H .求证: AG = CH

来源:2018年江苏省宿迁市中考数学试卷
  • 更新:2021-05-25
  • 题型:未知
  • 难度:未知

如图, AB CD 于点 O ,在 ΔAOC ΔBOD 中,有下列三个条件:① OC = OD ,② AC = BD ,③ A = B .请你在上述三个条件中选择两个为条件,另一个能作为这两个条件推出来的结论,并证明你的结论(只要求写出一种正确的选法).

(1)你选的条件为     ,结论为   

(2)证明你的结论.

image.png

来源:2021年贵州省铜仁市中考数学试卷
  • 更新:2021-08-01
  • 题型:未知
  • 难度:未知

如图, AB O 的直径,点 C O 上, AD 垂直于过点 C 的切线,垂足为 D CE 垂直 AB ,垂足为 E .延长 DA O 于点 F ,连接 FC FC AB 相交于点 G ,连接 OC

(1)求证: CD = CE

(2)若 AE = GE ,求证: ΔCEO 是等腰直角三角形.

来源:2018年江苏省苏州市中考数学试卷
  • 更新:2021-05-25
  • 题型:未知
  • 难度:未知

如图,在四边形 ABCD 中, AB = AD = 20 BC = DC = 10 2

(1)求证: ΔABC ΔADC

(2)当 BCA = 45 ° 时,求 BAD 的度数.

来源:2021年浙江省台州市中考数学试卷
  • 更新:2021-08-17
  • 题型:未知
  • 难度:未知

如图,点 A F C D 在一条直线上, AB / / DE AB = DE AF = DC .求证: BC / / EF

来源:2018年江苏省苏州市中考数学试卷
  • 更新:2021-05-25
  • 题型:未知
  • 难度:未知

如图,正方形 ABCD 中, AB = 2 5 O BC 边的中点,点 E 是正方形内一动点, OE = 2 ,连接 DE ,将线段 DE 绕点 D 逆时针旋转 90 ° DF ,连接 AE CF

(1)求证: AE = CF

(2)若 A E O 三点共线,连接 OF ,求线段 OF 的长.

(3)求线段 OF 长的最小值.

来源:2018年江苏省南通市中考数学试卷
  • 更新:2021-05-25
  • 题型:未知
  • 难度:未知

如图,在四边形 ABCD 中, BC = CD C = 2 BAD O 是四边形 ABCD 内一点,且 OA = OB = OD .求证:

(1) BOD = C

(2)四边形 OBCD 是菱形.

来源:2018年江苏省南京市中考数学试卷
  • 更新:2021-05-25
  • 题型:未知
  • 难度:未知

如图,矩形 ABCD 中, E AD 的中点,延长 CE BA 交于点 F ,连接 AC DF

(1)求证:四边形 ACDF 是平行四边形;

(2)当 CF 平分 BCD 时,写出 BC CD 的数量关系,并说明理由.

来源:2018年江苏省连云港市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

已知:如图, ABCD 的对角线 AC BD 相交于点 O ,过点 O 的直线分别与 AD BC 相交于点 E F .求证: AE = CF

来源:2018年江苏省淮安市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

如图, ΔOAD 为等腰直角三角形,延长 OA 至点 B 使 OB = OD ABCD 是矩形,其对角线 AC BD 交于点 E ,连接 OE AD 于点 F

(1)求证: ΔOAF ΔDAB

(2)求 DF AF 的值.

来源:2021年四川省雅安市中考数学试卷
  • 更新:2021-08-15
  • 题型:未知
  • 难度:未知

如图,把 ΔABC 沿 BC 翻折得 ΔDBC

(1)连接 AD ,则 BC AD 的位置关系是  

(2)不在原图中添加字母和线段,只加一个条件使四边形 ABDC 是平行四边形,写出添加的条件,并说明理由.

来源:2018年江苏省常州市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

在菱形 ABCD 中, ABC = 60 ° ,点 P 是射线 BD 上一动点,以 AP 为边向右侧作等边 ΔAPE ,点 E 的位置随着点 P 的位置变化而变化.

(1)如图1,当点 E 在菱形 ABCD 内部或边上时,连接 CE BP CE 的数量关系是   CE AD 的位置关系是  

(2)当点 E 在菱形 ABCD 外部时,(1)中的结论是否还成立?若成立,请予以证明;若不成立,请说明理由(选择图2,图3中的一种情况予以证明或说理);

(3)如图4,当点 P 在线段 BD 的延长线上时,连接 BE ,若 AB = 2 3 BE = 2 19 ,求四边形 ADPE 的面积.

来源:2018年江西省中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

定义:有一组邻边相等,并且它们的夹角是直角的凸四边形叫做等腰直角四边形.

(1)如图1,等腰直角四边形 ABCD AB = BC ABC = 90 °

①若 AB = CD = 1 AB / / CD ,求对角线 BD 的长.

②若 AC BD ,求证: AD = CD

(2)如图2,在矩形 ABCD 中, AB = 5 BC = 9 ,点 P 是对角线 BD 上一点,且 BP = 2 PD ,过点 P 作直线分别交边 AD BC 于点 E F ,使四边形 ABFE 是等腰直角四边形,求 AE 的长.

来源:2017年浙江省金华市义乌市(绍兴市)中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

已知:如图, E F 是平行四边形 ABCD 的对角线 AC 上的两点, AE = CF

求证:(1) ΔADF ΔCBE

(2) EB / / DF

来源:2018年浙江省杭州市临安市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

初中数学全等三角形的判定与性质解答题