已知:如图,在 中, ,点 是斜边 的中点, ,且 , 于点 ,连接 、 .
(1)求证: ;
(2)求证: ;
(3)设 的面积为 ,四边形 的面积为 ,当 时,求 的值.
如图, 与 相切于点 , 交 于点 , 的延长线交 于点 , 是 上不与 , 重合的点, .
(1)求 的大小;
(2)若 的半径为3,点 在 的延长线上,且 ,求证: 与 相切.
如图,已知四边形 是平行四边形,点 , 分别是 , 上的点, ,并且 .
求证:(1) ;
(2)四边形 是菱形.
如图,在 中, , ,以点 为圆心, 为半径的圆交 的延长线于点 ,过点 作 的平行线,交 于点 ,连接 .
(1)求证: 为 的切线;
(2)若 ,求弧 的长.
如图①,在四边形 中, 于点 , ,点 为 中点, 为线段 上的点,且 .
(1)求证: 平分 ;
(2)若 ,连接 ,当四边形 为平行四边形时,求线段 的长;
(3)如图②,若点 为 的中点,连接 、 ,求证: .
四边形 是边长为2的正方形, 是 的中点,连结 ,点 是射线 上一动点(不与点 重合),连结 ,交 于点 .
(1)如图1,当点 是 边的中点时,求证: ;
(2)如图2,当点 与点 重合时,求 的长;
(3)在点 运动的过程中,当线段 为何值时, ?请说明理由.
在 中, 、 分别是 、 上的点,将平行四边形 沿 所在直线翻折,使点 与点 重合,且点 落在点 处.
(1)求证:△ ;
(2)连接 ,若 , ,求四边形 的面积.
如图,在圆 中,弦 等于弦 ,且相交于点 ,其中 、 为 、 中点.
(1)证明: ;
(2)连接 、 、 ,若 ,证明:四边形 为矩形.
我们学习过利用尺规作图平分一个任意角,而“利用尺规作图三等分一个任意角”曾是数学史上一大难题,之后被数学家证明是不可能完成的.人们根据实际需要,发明了一种简易操作工具 三分角器.图1是它的示意图,其中 与半圆 的直径 在同一直线上,且 的长度与半圆的半径相等; 与 垂直于点 , 足够长.
使用方法如图2所示,若要把 三等分,只需适当放置三分角器,使 经过 的顶点 ,点 落在边 上,半圆 与另一边 恰好相切,切点为 ,则 , 就把 三等分了.
为了说明这一方法的正确性,需要对其进行证明.如下给出了不完整的“已知”和“求证”,请补充完整,并写出“证明”过程.
已知:如图2,点 , , , 在同一直线上, ,垂足为点 , .
求证: .
如图,在 中, , 是对角线 上的两点(点 在点 左侧),且 .
(1)求证:四边形 是平行四边形;
(2)当 , , 时,求 的长.
如图,在 中, , 与 相切于点 ,过点 作 的垂线交 的延长线于点 ,交 于点 ,连结 .
(1)求证: 是 的切线.
(2)若 , ,求 的长.
如图, 为等腰直角三角形,延长 至点 使 , 是矩形,其对角线 , 交于点 ,连接 交 于点 .
(1)求证: ;
(2)求 的值.
已知:如图,四边形 为平行四边形,点 、 、 、 在同一直线上, .
求证:(1) ;
(2) .