四边形 ABCD 是边长为2的正方形, E 是 AB 的中点,连结 DE ,点 F 是射线 BC 上一动点(不与点 B 重合),连结 AF ,交 DE 于点 G .
(1)如图1,当点 F 是 BC 边的中点时,求证: ΔABF ≅ ΔDAE ;
(2)如图2,当点 F 与点 C 重合时,求 AG 的长;
(3)在点 F 运动的过程中,当线段 BF 为何值时, AG = AE ?请说明理由.
画出将左图绕点O逆时针旋转90°后的图形,画出将右图以直线MN为对称轴翻折后的图形.
如图,矩形 O A B C 在平面直角坐标系 x O y 中,点 A 在 x 轴的正半轴上,点 C 在 y 轴的正半轴上, O A = 4 , O C = 3 ,若抛物线的顶点在 B C 边上,且抛物线经过 O , A 两点,直线 A C 交抛物线于点 D .
(1)求抛物线的解析式; (2)求点 D 的坐标; (3)若点 M 在抛物线上,点 N 在 x 轴上,是否存在以 A , D , M , N 为顶点的四边形是平行四边形?若存在,求出点N的坐标;若不存在,请说明理由.
已知:如图,AC⊙O是的直径,BC是⊙O的弦,点P是⊙O外一点,∠PBA=∠C. (1)求证:PB是⊙O的切线; (2)若OP∥BC,且OP=8,BC=2.求⊙O的半径.
某校七年级准备购买一批笔记本奖励优秀学生,在购买时发现,每本笔记本可以打九折,用360元钱购买的笔记本,打折后购买的数量比打折前多10本. (1)求打折前每本笔记本的售价是多少元? (2)由于考虑学生的需求不同,学校决定购买笔记本和笔袋共90件,笔袋每个原售价为6元,两种物品都打九折,若购买总金额不低于360元,且不超过365元,问有哪几种购买方案?
如图,为了缓解交通拥堵,方便行人,在某街道计划修建一座横断面为梯形ABCD的过街天桥,若天桥斜坡AB的坡角∠BAD为35°,斜坡CD的坡度为i=1:1.2(垂直高度CE与水平宽度DE的比),上底BC=10m,天桥高度CE=5m,求天桥下底AD的长度?(结果精确到0.1m,参考数据:sin35°≈0.57,cos35°≈0.82,tan35°≈0.70)