初中数学

在等腰 ΔADC 和等腰 ΔBEC 中, ADC = BEC = 90 ° BC < CD ,将 ΔBEC 绕点 C 逆时针旋转,连接 AB ,点 O 为线段 AB 的中点,连接 DO EO

(1)如图1,当点 B 旋转到 CD 边上时,请直接写出线段 DO EO 的位置关系和数量关系;

(2)如图2,当点 B 旋转到 AC 边上时,(1)中的结论是否成立?若成立,请写出证明过程,若不成立,请说明理由;

(3)若 BC = 4 CD = 2 6 ,在 ΔBEC 绕点 C 逆时针旋转的过程中,当 ACB = 60 ° 时,请直接写出线段 OD 的长.

来源:2020年辽宁省铁岭市、葫芦岛市中考数学试卷
  • 更新:2021-01-17
  • 题型:未知
  • 难度:未知

ABCD 中, E F 分别是 AD BC 上的点,将平行四边形 ABCD 沿 EF 所在直线翻折,使点 B 与点 D 重合,且点 A 落在点 A ' 处.

(1)求证:△ A ' ED ΔCFD

(2)连接 BE ,若 EBF = 60 ° EF = 3 ,求四边形 BFDE 的面积.

来源:2018年四川省凉山州中考数学试卷
  • 更新:2021-05-23
  • 题型:未知
  • 难度:未知

如图,在矩形 ABCD 中, AD = kAB ( k > 0 ) ,点 E 是线段 CB 延长线上的一个动点,连接 AE ,过点 A AF AE 交射线 DC 于点 F

(1)如图1,若 k = 1 ,则 AF AE 之间的数量关系是    

(2)如图2,若 k 1 ,试判断 AF AE 之间的数量关系,写出结论并证明;(用含 k 的式子表示)

(3)若 AD = 2 AB = 4 ,连接 BD AF 于点 G ,连接 EG ,当 CF = 1 时,求 EG 的长.

来源:2020年辽宁省营口市中考数学试卷
  • 更新:2021-01-17
  • 题型:未知
  • 难度:未知

如图,在 ABCD 中, BAD DCB 的平分线 AE CF 分别交 BC AD 于点 E F ,点 M N 分别为 AE CF 的中点,连接 FM EN ,试判断 FM EN 的数量关系和位置关系,并加以证明.

来源:2016年辽宁省锦州市中考数学试卷
  • 更新:2021-05-15
  • 题型:未知
  • 难度:未知

如图,四边形 ABCD 是正方形,点 F 是射线 AD 上的动点,连接 CF ,以 CF 为对角线作正方形 CGFE ( C G F E 按逆时针排列),连接 BE DG

(1)当点 F 在线段 AD 上时.

①求证: BE = DG

②求证: CD - FD = 2 BE

(2)设正方形 ABCD 的面积为 S 1 ,正方形 CGFE 的面积为 S 2 ,以 C G D F 为顶点的四边形的面积为 S 3 ,当 S 2 S 1 = 13 25 时,请直接写出 S 3 S 1 的值.

来源:2020年辽宁省盘锦市中考数学试卷
  • 更新:2021-01-16
  • 题型:未知
  • 难度:未知

如图,在圆 O 中,弦 AB 等于弦 CD ,且相交于点 P ,其中 E F AB CD 中点.

(1)证明: OP EF

(2)连接 AF AC CE ,若 AF / / OP ,证明:四边形 AFEC 为矩形.

来源:2021年上海市中考数学试卷
  • 更新:2021-08-16
  • 题型:未知
  • 难度:未知

如图①, ΔABC ΔCDE 是等腰直角三角形,直角边 AC CD 在同一条直线上,点 M N 分别是斜边 AB DE 的中点,点 P AD 的中点,连接 AE BD

(1)猜想 PM PN 的数量关系及位置关系,请直接写出结论;

(2)现将图①中的 ΔCDE 绕着点 C 顺时针旋转 α ( 0 ° < α < 90 ° ) ,得到图②, AE MP BD 分别交于点 G H .请判断(1)中的结论是否成立?若成立,请证明;若不成立,请说明理由;

(3)若图②中的等腰直角三角形变成直角三角形,使 BC = kAC CD = kCE ,如图③,写出 PM PN 的数量关系,并加以证明.

来源:2016年辽宁省丹东市中考数学试卷
  • 更新:2021-05-15
  • 题型:未知
  • 难度:未知

如图,在 ABCD 中, E F 是对角线 BD 上的两点(点 E 在点 F 左侧),且 AEB = CFD = 90 °

(1)求证:四边形 AECF 是平行四边形;

(2)当 AB = 5 tan ABE = 3 4 CBE = EAF 时,求 BD 的长.

来源:2021年浙江省温州市中考数学试卷
  • 更新:2021-08-17
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, CA = CB BC A 相切于点 D ,过点 A AC 的垂线交 CB 的延长线于点 E ,交 A 于点 F ,连结 BF

(1)求证: BF A 的切线.

(2)若 BE = 5 AC = 20 ,求 EF 的长.

来源:2021年浙江省衢州市中考数学试卷
  • 更新:2021-08-17
  • 题型:未知
  • 难度:未知

如图, ΔOAD 为等腰直角三角形,延长 OA 至点 B 使 OB = OD ABCD 是矩形,其对角线 AC BD 交于点 E ,连接 OE AD 于点 F

(1)求证: ΔOAF ΔDAB

(2)求 DF AF 的值.

来源:2021年四川省雅安市中考数学试卷
  • 更新:2021-08-15
  • 题型:未知
  • 难度:未知

如图, BD / / AC BD = BC ,点 E BC 上,且 BE = AC .求证: D = ABC

来源:2021年陕西省中考数学试卷
  • 更新:2021-08-16
  • 题型:未知
  • 难度:未知

已知:如图,四边形 ABCD 为平行四边形,点 E A C F 在同一直线上, AE = CF

求证:(1) ΔADE ΔCBF

(2) ED / / BF

来源:2021年湖南省怀化市中考数学试卷
  • 更新:2021-08-16
  • 题型:未知
  • 难度:未知

如图,已知 AD = BC BD = AC .求证: ADB = BCA

来源:2020年云南省中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图,在 ABCD 中,过 B 点作 BM AC 于点 E ,交 CD 于点 M ,过 D 点作 DN AC 于点 F ,交 AB 于点 N

(1)求证:四边形 BMDN 是平行四边形;

(2)已知 AF = 12 EM = 5 ,求 AN 的长.

来源:2018年四川省巴中市中考数学试卷
  • 更新:2021-05-23
  • 题型:未知
  • 难度:未知

在菱形 ABCD 中,点 E 为对角线 BD 上一点,点 F G 在直线 BC 上,且 BE = EG AEF = BEG

(1)如图1,求证: ΔABE ΔFGE

(2)如图2,当 ABC = 120 ° 时,求证: AB = BE + BF

(3)如图3,当 ABC = 90 ° ,点 F 在线段 BC 上时,线段 AB BE BF 的数量关系如何?(请直接写出你猜想的结论)

来源:2017年辽宁省阜新市中考数学试卷
  • 更新:2021-05-13
  • 题型:未知
  • 难度:未知

初中数学全等三角形的判定与性质解答题