初中数学

如图,点 P 在矩形 ABCD 的对角线 AC 上,且不与点 A C 重合,过点 P 分别作边 AB AD 的平行线,交两组对边于点 E F G H

(1)求证: ΔPHC ΔCFP

(2)证明四边形 PEDH 和四边形 PFBG 都是矩形,并直接写出它们面积之间的关系.

来源:2016年浙江省台州市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

如图1,我们把对角线互相垂直的四边形叫做垂美四边形.

(1)概念理解:如图2,在四边形 ABCD 中, AB = AD CB = CD ,问四边形 ABCD 是垂美四边形吗?请说明理由.

(2)性质探究:试探索垂美四边形 ABCD 两组对边 AB CD BC AD 之间的数量关系.

猜想结论:(要求用文字语言叙述)  

写出证明过程(先画出图形,写出已知、求证).

(3)问题解决:如图3,分别以 Rt Δ ACB 的直角边 AC 和斜边 AB 为边向外作正方形 ACFG 和正方形 ABDE ,连接 CE BG GE ,已知 AC = 4 AB = 5 ,求 GE 长.

来源:2016年浙江省衢州市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

如果将四根木条首尾相连,在相连处用螺钉连接,就能构成一个平面图形.

(1)若固定三根木条 AB BC AD 不动, AB = AD = 2 cm BC = 5 cm ,如图,量得第四根木条 CD = 5 cm ,判断此时 B D 是否相等,并说明理由.

(2)若固定二根木条 AB BC 不动, AB = 2 cm BC = 5 cm ,量得木条 CD = 5 cm B = 90 ° ,写出木条 AD 的长度可能取得的一个值(直接写出一个即可)

(3)若固定一根木条 AB 不动, AB = 2 cm ,量得木条 CD = 5 cm ,如果木条 AD BC 的长度不变,当点 D 移到 BA 的延长线上时,点 C 也在 BA 的延长线上;当点 C 移到 AB 的延长线上时,点 A C D 能构成周长为 30 cm 的三角形,求出木条 AD BC 的长度.

来源:2016年浙江省金华市义乌市(绍兴市)中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

我们定义:有一组邻角相等的凸四边形叫做“等邻角四边形”

(1)概念理解:

请你根据上述定义举一个等邻角四边形的例子;

(2)问题探究:

如图1,在等邻角四边形 ABCD 中, DAB = ABC AD BC 的中垂线恰好交于 AB 边上一点 P ,连接 AC BD ,试探究 AC BD 的数量关系,并说明理由;

(3)应用拓展:

如图2,在 Rt Δ ABC Rt Δ ABD 中, C = D = 90 ° BC = BD = 3 AB = 5 ,将 Rt Δ ABD 绕着点 A 顺时针旋转角 α ( 0 ° < α < BAC ) 得到 Rt AB ' D ' (如图 3 ) ,当凸四边形 AD ' BC 为等邻角四边形时,求出它的面积.

来源:2016年浙江省嘉兴市(舟山市)中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

如图,已知四边形 ABCD 和四边形 DEFG 为正方形,点 E 在线段 DC 上,点 A D G 在同一直线上,且 AD = 3 DE = 1 ,连接 AC CG AE ,并延长 AE CG 于点 H

(1)求 sin EAC 的值.

(2)求线段 AH 的长.

来源:2016年浙江省杭州市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

如图,已知 AOB = 60 ° ,在 AOB 的平分线 OM 上有一点 C ,将一个 120 ° 角的顶点与点 C 重合,它的两条边分别与直线 OA OB 相交于点 D E

(1)当 DCE 绕点 C 旋转到 CD OA 垂直时(如图 1 ) ,请猜想 OE + OD OC 的数量关系,并说明理由;

(2)当 DCE 绕点 C 旋转到 CD OA 不垂直时,到达图2的位置,(1)中的结论是否成立?并说明理由;

(3)当 DCE 绕点 C 旋转到 CD OA 的反向延长线相交时,上述结论是否成立?请在图3中画出图形,若成立,请给于证明;若不成立,线段 OD OE OC 之间又有怎样的数量关系?请写出你的猜想,不需证明.

来源:2018年四川省自贡市中考数学试卷
  • 更新:2021-05-23
  • 题型:未知
  • 难度:未知

已知:如图,在 Rt Δ ABC 中, ACB = 90 ° ,点 M 是斜边 AB 的中点, MD / / BC ,且 MD = CM DE AB 于点 E ,连接 AD CD

(1)求证: ΔMED ΔBCA

(2)求证: ΔAMD ΔCMD

(3)设 ΔMDE 的面积为 S 1 ,四边形 BCMD 的面积为 S 2 ,当 S 2 = 17 5 S 1 时,求 cos ABC 的值.

来源:2018年四川省资阳市中考数学试卷
  • 更新:2021-05-23
  • 题型:未知
  • 难度:未知

如图,已知 1 = 2 B = D ,求证: CB = CD

来源:2018年四川省宜宾市中考数学试卷
  • 更新:2021-05-23
  • 题型:未知
  • 难度:未知

如图,已知四边形 ABCD 是平行四边形,点 E F 分别是 AB BC 上的点, AE = CF ,并且 AED = CFD

求证:(1) ΔAED ΔCFD

(2)四边形 ABCD 是菱形.

来源:2018年四川省内江市中考数学试卷
  • 更新:2021-05-23
  • 题型:未知
  • 难度:未知

如图,已知 AB = AD AC = AE BAE = DAC

求证: C = E

来源:2018年四川省南充市中考数学试卷
  • 更新:2021-05-23
  • 题型:未知
  • 难度:未知

如图①,在四边形 ABCD 中, AC BD 于点 E AB = AC = BD ,点 M BC 中点, N 为线段 AM 上的点,且 MB = MN

(1)求证: BN 平分 ABE

(2)若 BD = 1 ,连接 DN ,当四边形 DNBC 为平行四边形时,求线段 BC 的长;

(3)如图②,若点 F AB 的中点,连接 FN FM ,求证: ΔMFN ΔBDC

来源:2018年四川省眉山市中考数学试卷
  • 更新:2021-05-23
  • 题型:未知
  • 难度:未知

如图, EF = BC DF = AC DA = EB .求证: F = C

来源:2018年四川省泸州市中考数学试卷
  • 更新:2021-05-23
  • 题型:未知
  • 难度:未知

ABCD 中, E F 分别是 AD BC 上的点,将平行四边形 ABCD 沿 EF 所在直线翻折,使点 B 与点 D 重合,且点 A 落在点 A ' 处.

(1)求证:△ A ' ED ΔCFD

(2)连接 BE ,若 EBF = 60 ° EF = 3 ,求四边形 BFDE 的面积.

来源:2018年四川省凉山州中考数学试卷
  • 更新:2021-05-23
  • 题型:未知
  • 难度:未知

已知 Rt Δ ABC 中, ACB = 90 ° ,点 D E 分别在 BC AC 边上,连接 BE AD 交于点 P ,设 AC = kBD CD = kAE k 为常数,试探究 APE 的度数:

(1)如图1,若 k = 1 ,则 APE 的度数为  

(2)如图2,若 k = 3 ,试问(1)中的结论是否成立?若成立,请说明理由;若不成立,求出 APE 的度数.

(3)如图3,若 k = 3 ,且 D E 分别在 CB CA 的延长线上,(2)中的结论是否成立,请说明理由.

来源:2018年四川省乐山市中考数学试卷
  • 更新:2021-05-23
  • 题型:未知
  • 难度:未知

如图,已知 1 = 2 3 = 4 ,求证: BC = BD

来源:2018年四川省乐山市中考数学试卷
  • 更新:2021-05-23
  • 题型:未知
  • 难度:未知

初中数学全等三角形的判定与性质解答题