如果将四根木条首尾相连,在相连处用螺钉连接,就能构成一个平面图形.
(1)若固定三根木条 AB , BC , AD 不动, AB = AD = 2 cm , BC = 5 cm ,如图,量得第四根木条 CD = 5 cm ,判断此时 ∠ B 与 ∠ D 是否相等,并说明理由.
(2)若固定二根木条 AB 、 BC 不动, AB = 2 cm , BC = 5 cm ,量得木条 CD = 5 cm , ∠ B = 90 ° ,写出木条 AD 的长度可能取得的一个值(直接写出一个即可)
(3)若固定一根木条 AB 不动, AB = 2 cm ,量得木条 CD = 5 cm ,如果木条 AD , BC 的长度不变,当点 D 移到 BA 的延长线上时,点 C 也在 BA 的延长线上;当点 C 移到 AB 的延长线上时,点 A 、 C 、 D 能构成周长为 30 cm 的三角形,求出木条 AD , BC 的长度.
如图,DE⊥AB于E,DF⊥AC于F,若BD=CD、BE=CF.(1)求证:AD平分∠BAC;(2)直接写出AB+AC与AE之间的等量关系.
图①是一面矩形彩旗完全展平时的尺寸图(单位:cm),其中矩形ABCD是由双层白布缝制的穿旗杆用的旗裤,阴影部分DCEF为矩形绸缎旗面.(1)用经加工的圆木杆穿入旗裤作旗杆,求旗杆的最大直径(精确到1cm);(2)将穿好彩旗的旗杆垂直插在操场上,旗杆从旗顶到地面的高度为220cm,在无风的天气里,彩旗自然下垂,如图②,求彩旗下垂时最低处离地面的最小高度h.
某校为了满足学生借阅图书的需求,计划购买一批新书.为此,该校图书管理员对一周内本校学生从图书馆借出各类图书的数量进行了统计.结果如图:请你根据统计图中的信息,解答下列问题:(1)补全条形统计图和扇形统计图;(2)该校学生最喜欢借阅哪类图书?(3)该校计划购买新书共600本,若按扇形统计图中的百分比来相应的确定漫画、科普、文学、其它这四类图书的购买量,求应购买这四类图书各多少本?
已知a,b,c为△ABC的三边,且满足a2c2-b2c2=a4-b4,试判定△ABC的形状.
如图,△ABC中,DE是AC的垂直平分线,AE=3cm,△ABD的周长为13cm,求△ABC的周长.