如图1,我们把对角线互相垂直的四边形叫做垂美四边形.
(1)概念理解:如图2,在四边形 ABCD 中, AB = AD , CB = CD ,问四边形 ABCD 是垂美四边形吗?请说明理由.
(2)性质探究:试探索垂美四边形 ABCD 两组对边 AB , CD 与 BC , AD 之间的数量关系.
猜想结论:(要求用文字语言叙述)
写出证明过程(先画出图形,写出已知、求证).
(3)问题解决:如图3,分别以 Rt Δ ACB 的直角边 AC 和斜边 AB 为边向外作正方形 ACFG 和正方形 ABDE ,连接 CE , BG , GE ,已知 AC = 4 , AB = 5 ,求 GE 长.
如图,直线CD与直线AB相交于C,根据下列语句画图、解答。 (1)过点P作PQ∥CD,交AB于点Q (2)过点P作PR⊥CD,垂足为R (3)若∠DCB=1200,猜想∠PQC是多少度?并说明理由
如图,A点在B处的北偏东40°方向,C点在B处的北偏东85°方向, A点在C处的北偏西45°方向,求∠BAC及∠BCA的度数?
在平面直角坐标系中,顺次连结A(-2,0)、B(4,0)、C(-2,-3)各点,试求: (1)A、B两点之间的距离。 (2)点C到X轴的距离。 (3)△ABC的面积。
如图15,抛物线与轴交于两点,与轴交于点,连结,若 (1)求抛物线对应的二次函数的解析式; (2)在抛物线的对称轴上是否存在点,使若存在,求出点的坐标;若不存在,请说明理由; (3)如图16所示,连结,是线段上(不与、重合)的一个动点.过点作直线,交抛物线于点,连结、,设点的横坐标为.当t为何值时,的面积最大?最大面积为多少?
已知:如图14,⊙A与轴交于C、D两点,圆心A的坐标为(1,0),⊙A的半径为,过点C作⊙A的切线交轴于点B(-4,0). (1)求切线BC的解析式; (2)若点P是第一象限内⊙A上的一点,过点P作⊙A的切线与直线BC相交于点G,且∠CGP=120°,求点G的坐标.