如图1,我们把对角线互相垂直的四边形叫做垂美四边形.
(1)概念理解:如图2,在四边形 ABCD 中, AB = AD , CB = CD ,问四边形 ABCD 是垂美四边形吗?请说明理由.
(2)性质探究:试探索垂美四边形 ABCD 两组对边 AB , CD 与 BC , AD 之间的数量关系.
猜想结论:(要求用文字语言叙述)
写出证明过程(先画出图形,写出已知、求证).
(3)问题解决:如图3,分别以 Rt Δ ACB 的直角边 AC 和斜边 AB 为边向外作正方形 ACFG 和正方形 ABDE ,连接 CE , BG , GE ,已知 AC = 4 , AB = 5 ,求 GE 长.
已知,如图, BE、CF分别是△ABC的边AC、AB上的高,在BE上截取BD=AC,在CF的延长线上截取CG=AB,连结AD、AG.请你判断线段AD与AG有什么关系?并证明.
已知:AD既是△ABC的角平分线又是BC边上的中线,DE⊥AB于E,DF⊥AC于 F , 求证:BE=CF
如图:在△ABC中,AB=AC,点M、N在BC上,且AM=AN 。求证:MB=CN.
从甲、乙两种农作物中各抽取1株苗,分别测得它的苗高如下:(单位:cm) 甲:9、10、11、12、7、13、10、8、12、8; 乙:8、13、12、11、10、12、7、7、9、11; 问:(1)哪种农作物的苗长得比较高? (2)哪种农作物的苗长得比较整齐?
已知:如图,D为等边△ABC内一点,DB=DA,BP=AB,∠DBP=∠DBC,求∠BPD的度数.