初中数学

如图,正方形 ABCD 中, AB = 1 ,连接 AC ACD 的平分线交 AD 于点 E ,在 AB 上截取 AF = DE ,连接 DF ,分别交 CE CA 于点 G H ,点 P 是线段 GC 上的动点, PQ AC 于点 Q ,连接 PH .下列结论:① CE DF ;② DE + DC = AC ;③ EA = 3 AH ;④ PH + PQ 的最小值是 2 2 ,其中正确结论的序号是   

来源:2021年湖北省黄冈市中考数学试卷
  • 更新:2021-08-01
  • 题型:未知
  • 难度:未知

如图,四边形 ABDC 中, AC = BC ACB = 90 ° AD BD 于点 D .若 BD = 2 CD = 4 2 ,则线段 AB 的长为   

来源:2021年湖北省鄂州市中考数学试卷
  • 更新:2021-08-01
  • 题型:未知
  • 难度:未知

在等腰 ΔADE 中, AE = DE ΔABC 是直角三角形, CAB = 90 ° ABC = 1 2 AED ,连接 CD BD ,点 F BD 的中点,连接 EF

(1)当 EAD = 45 ° ,点 B 在边 AE 上时,如图①所示,求证: EF = 1 2 CD

(2)当 EAD = 45 ° ,把 ΔABC 绕点 A 逆时针旋转,顶点 B 落在边 AD 上时,如图②所示,当 EAD = 60 ° ,点 B 在边 AE 上时,如图③所示,猜想图②、图③中线段 EF CD 又有怎样的数量关系?请直接写出你的猜想,不需证明.

来源:2021年黑龙江省龙东地区中考数学试卷
  • 更新:2021-08-01
  • 题型:未知
  • 难度:未知

如图,平行四边形 ABFC 的对角线 AF BC 相交于点 E ,点 O AC 的中点,连接 BO 并延长,交 FC 的延长线于点 D ,交 AF 于点 G ,连接 AD OE ,若平行四边形 ABFC 的面积为48,则 S ΔAOG 的面积为 (    )

A.

5.5

B.

5

C.

4

D.

3

来源:2021年黑龙江省龙东地区中考数学试卷
  • 更新:2021-08-01
  • 题型:未知
  • 难度:未知

如图1,在正方形 ABCD 中,点 E 是边 BC 上一点,且点 E 不与点 B C 重合,点 F BA 的延长线上一点,且 AF = CE

(1)求证: ΔDCE ΔDAF

(2)如图2,连接 EF ,交 AD 于点 K ,过点 D DH EF ,垂足为 H ,延长 DH BF 于点 G ,连接 HB HC

①求证: HD = HB

②若 DK HC = 2 ,求 HE 的长.

来源:2021年海南省中考数学试卷
  • 更新:2021-08-01
  • 题型:未知
  • 难度:未知

如图,在矩形 ABCD 中, AB = 6 AD = 8 ,将此矩形折叠,使点 C 与点 A 重合,点 D 落在点 D ' 处,折痕为 EF ,则 AD ' 的长为    DD ' 的长为   

来源:2021年海南省中考数学试卷
  • 更新:2021-08-01
  • 题型:未知
  • 难度:未知

如图, E F 分别是正方形 ABCD 的边 AB BC 上的动点,满足 AE = BF ,连接 CE DF ,相交于点 G ,连接 AG ,若正方形的边长为2.则线段 AG 的最小值为   .

image.png

来源:2021年贵州省铜仁市中考数学试卷
  • 更新:2021-08-01
  • 题型:未知
  • 难度:未知

在四边形 ABCD 中,对角线 AC 平分 BAD

【探究发现】

(1)如图①,若 BAD = 120 ° ABC = ADC = 90 ° .求证: AD + AB = AC

【拓展迁移】

(2)如图②,若 BAD = 120 ° ABC + ADC = 180 °

①猜想 AB AD AC 三条线段的数量关系,并说明理由;

②若 AC = 10 ,求四边形 ABCD 的面积.

来源:2021年贵州省黔东南州中考数学试卷
  • 更新:2021-07-22
  • 题型:未知
  • 难度:未知

如图,在四边形 ABCD 中,对角线 AC BD 交于点 O ,已知 OA = OC OB = OD ,过点 O EF BD ,分别交 AB DC 于点 E F ,连接 DE BF

(1)求证:四边形 DEBF 是菱形:

(2)设 AD / / EF AD + AB = 12 BD = 4 3 ,求 AF 的长.

来源:2021年广西玉林市中考数学试卷
  • 更新:2021-07-22
  • 题型:未知
  • 难度:未知

如图,在正六边形 ABCDEF 中,连接对角线 AD AE AC DF DB AC BD 交于点 M AE DF 交于点为 N MN AD 交于点 O ,分别延长 AB DC 于点 G ,设 AB = 3 .有以下结论:

MN AD

MN = 2 3

ΔDAG 的重心、内心及外心均是点 M

④四边形 FACD 绕点 O 逆时针旋转 30 ° 与四边形 ABDE 重合

则所有正确结论的序号是   

来源:2021年广西玉林市中考数学试卷
  • 更新:2021-07-22
  • 题型:未知
  • 难度:未知

如图,在正方形 ABCD 中, E F 是对角线 AC 上的两点,且 EF = 2 AE = 2 CF ,连接 DE 并延长交 AB 于点 M ,连接 DF 并延长交 BC 于点 N ,连接 MN ,则 S ΔAMD S ΔMBN = (    )

A.

3 4

B.

2 3

C.

1

D.

1 2

来源:2021年广西贵港市中考数学试卷
  • 更新:2021-07-22
  • 题型:未知
  • 难度:未知

问题解决:如图1,在矩形 ABCD 中,点 E F 分别在 AB BC 边上, DE = AF DE AF 于点 G

(1)求证:四边形 ABCD 是正方形;

(2)延长 CB 到点 H ,使得 BH = AE ,判断 ΔAHF 的形状,并说明理由.

类比迁移:如图2,在菱形 ABCD 中,点 E F 分别在 AB BC 边上, DE AF 相交于点 G DE = AF AED = 60 ° AE = 6 BF = 2 ,求 DE 的长.

来源:2021年甘肃省武威市中考数学试卷
  • 更新:2021-07-22
  • 题型:未知
  • 难度:未知

如图,在正方形 ABCD 中, E F 为边 AB 上的两个三等分点,点 A 关于 DE 的对称点为 A ' AA ' 的延长线交 BC 于点 G

(1)求证: DE / / A ' F

(2)求 GA ' B 的大小;

(3)求证: A ' C = 2 A ' B

来源:2021年福建省中考数学试卷
  • 更新:2021-07-22
  • 题型:未知
  • 难度:未知

如图,在矩形 ABCD 中, AB = 4 AD = 5 ,点 E F 分别是边 AB BC 上的动点,点 E 不与 A B 重合,且 EF = AB G 是五边形 AEFCD 内满足 GE = GF EGF = 90 ° 的点.现给出以下结论:

GEB GFB 一定互补;

②点 G 到边 AB BC 的距离一定相等;

③点 G 到边 AD DC 的距离可能相等;

④点 G 到边 AB 的距离的最大值为 2 2

其中正确的是        .(写出所有正确结论的序号)

来源:2021年福建省中考数学试卷
  • 更新:2021-07-22
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, AB = AC BAC = α M BC 的中点,点 D MC 上,以点 A 为中心,将线段 AD 顺时针旋转 α 得到线段 AE ,连接 BE DE

(1)比较 BAE CAD 的大小;用等式表示线段 BE BM MD 之间的数量关系,并证明;

(2)过点 M AB 的垂线,交 DE 于点 N ,用等式表示线段 NE ND 的数量关系,并证明.

来源:2021年北京市中考数学试卷
  • 更新:2021-07-22
  • 题型:未知
  • 难度:未知

初中数学全等三角形的判定与性质试题