初中数学

如图,在 ΔABC 中, AC = BC ,矩形 DEFG 的顶点 D E AB 上,点 F G 分别在 BC AC 上,若 CF = 4 BF = 3 ,且 DE = 2 EF ,则 EF 的长为   

来源:2021年江苏省扬州市中考数学试卷
  • 更新:2021-08-20
  • 题型:未知
  • 难度:未知

如图,已知 F E 分别是正方形 ABCD 的边 AB BC 的中点, AE DF 交于 P .则下列结论成立的是 (    )

A.

BE = 1 2 AE

B.

PC = PD

C.

EAF + AFD = 90 °

D.

PE = EC

来源:2021年湖南省常德市中考数学试卷
  • 更新:2021-08-01
  • 题型:未知
  • 难度:未知

数学活动--求重叠部分的面积.
问题情境:数学活动课上,老师出示了一个问题:
如图1,将两块全等的直角三角形纸片△ABC和△DEF叠放在一起,其中∠ACB=∠E=90°,BC=DE=6,AC=FE=8,顶点D与边AB的中点重合.

(1)若DE经过点C,DF交AC于点G,求重叠部分(△DCG)的面积;
(2)合作交流:“希望”小组受问题(1)的启发,将△DEF绕点D旋转,使DE⊥AB交AC于点H,DF交AC于点G,如图2,求重叠部分(△DGH)的面积.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在△ABC中,∠C=90°,AC=BC=2,D是AB的中点,点E、F分别在AC、BC边上运动(点E不与点A、C重合),且保持AE=CF,连接DE、DF、EF.在此运动变化的过程中,下列结论:

①△DFE是等腰直角三角形;
②四边形CEDF的周长不变;
③点C到线段EF的最大距离为1.
其中正确的结论有__________(填写所有正确结论的序号)

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,已知线段相交于点,联结的中点,的中点,联结.若∠A=∠D,∠OEF=∠OFE,求证:AB=DC.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

雨伞的中截面如图所示,伞骨AB=AC,支撑杆OE=OF,AE=AB,AF=AC,当O沿AD滑动时,雨伞开闭,问雨伞开闭过程中,∠BAD与∠CAD有何关系?说明理由.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

初中数学全等三角形的判定与性质试题