如图,分别以Rt△ ABC的直角边 AC及斜边 AB向外作等边△ ACD及等边△ ABE,已知:∠ BAC=30°, EF⊥ AB,垂足为 F,连接 DF.
(1)试说明 AC= EF;
(2)求证:四边形 ADFE是平行四边形.
如图,点 、 分别是矩形 的边 、 上一点,若 ,且 .
(1)求证:点 为 的中点;
(2)延长 与 的延长线相交于点 ,连接 ,已知 ,求 的值.
如图①,正方形 ABCD中,点 O是对角线 AC的中点,点 P是线段 AO上(不与 A, O重合)的一个动点,过点 P作 PE⊥ PB且 PE交边 CD于点 E.
(1)求证: PB= PE.
(2)如图②,若正方形 ABCD的边长为2,过 E作 EF⊥ AC于点 F,在 P点运动的过程中, PF的长度是否发生变化?若不变,试求出这个不变的值;若变化,请说明理由.
(3)如图③,用等式表示线段 PC, PA, CE之间的数量关系.
如图,正方形 ABCD的面积为3 cm 2, E为 BC边上一点,∠ BAE=30°, F为 AE的中点,过点 F作直线分别与 AB, DC相交于点 M, N.若 MN= AE,则 AM的长等于 cm.
如图, 中,点 为边 的中点,连接 ,将 沿直线 翻折至 所在平面内,得 ,连接 ,分别与边 交于点 ,与 交于点 .若 , ,则 的长为 .
如图,在 中, , 是对角线 上的两点(点 在点 左侧),且 .
(1)求证:四边形 是平行四边形;
(2)当 , , 时,求 的长.
在① ,② ,③ 这三个条件中选择其中一个,补充在下面的问题中,并完成问题的解答.
问题:如图,在 中, ,点 在 边上(不与点 ,点 重合),点 在 边上(不与点 ,点 重合),连接 , , 与 相交于点 .若 ① ② 或 ③ ,求证: .
注:如果选择多个条件分别作答,按第一个解答计分.
如图,点 是 对角线的交点, 过点 分别交 , 于点 , ,下列结论成立的是
A. |
|
B. |
|
C. |
|
D. |
|
如图, 中, , ,点 ,点 ,反比例函数 的图象经过点 .
(1)求反比例函数的解析式;
(2)将直线 向上平移 个单位后经过反比例函数 图象上的点 ,求 , 的值.
如图,在等边三角形 中,点 是边 上一定点,点 是直线 上一动点,以 为一边作等边三角形 ,连接 .
【问题解决】
如图1,若点 在边 上,求证: ;
【类比探究】
如图2,若点 在边 的延长线上,请探究线段 , 与 之间存在怎样的数量关系?并说明理由.
如图,矩形 中, 是 的中点,延长 , 交于点 ,连接 , .
(1)求证:四边形 是平行四边形;
(2)当 平分 时,写出 与 的数量关系,并说明理由.
如图,在 中, ,点 、 分别是线段 、 的中点,过点 作 的平行线交 的延长线于点 ,连接 .
(1)求证: ;
(2)求证:四边形 为矩形.