如图①,正方形 ABCD中,点 O是对角线 AC的中点,点 P是线段 AO上(不与 A, O重合)的一个动点,过点 P作 PE⊥ PB且 PE交边 CD于点 E.
(1)求证: PB= PE.
(2)如图②,若正方形 ABCD的边长为2,过 E作 EF⊥ AC于点 F,在 P点运动的过程中, PF的长度是否发生变化?若不变,试求出这个不变的值;若变化,请说明理由.
(3)如图③,用等式表示线段 PC, PA, CE之间的数量关系.
解方程:
某开发商进行商铺促销,广告上写着如下条款: 投资者购买商铺后,必须由开发商代为租赁5年,5年期满后由开发商以比原商铺标价高20%的价格进行回购,投资者可在以下两种购铺方案中做出选择: 方案一:投资者按商铺标价一次性付清铺款,每年可以获得的租金为商铺标价的10%. 方案二:投资者按商铺标价的八五折一次性付清铺款,2年后每年可以获得的租金为商铺标价的10%,但要缴纳租金的10%作为管理费用. (1)请问:投资者选择哪种购铺方案,5年后所获得的投资收益率更高?为什么?(注:投资收益率=×100%) (2)对同一标价的商铺,甲选择了购铺方案一,乙选择了购铺方案二,那么5年后两人获得的收益将相差5万元.问:甲、乙两人各投资了多少万元?
儿童节期间,文具商店搞促销活动,同时购买一个书包和一个文具盒可以打8折优惠,能比标价省13.2元.已知书包标价比文具盒标价的3倍少6元,那么书包和文具盒的标价各是多少元?
观察下列的等式 (1)(2)(3)… … ①发现上述3个等式的规律,猜想第5个等式并进行验证; ②写出含字母(为任意自然数,且≥2)表示的等式,并写出证明过程。
计算: (1) (2)