初中数学

如图,在边长为2的等边 ΔABC 中, D BC 边上的中点,以点 A 为圆心, AD 为半径作圆与 AB AC 分别交于 E F 两点,则图中阴影部分的面积为 (    )

A.

π 6

B.

π 3

C.

π 2

D.

2 π 3

来源:2021年广西贺州市中考数学试卷
  • 更新:2021-07-22
  • 题型:未知
  • 难度:未知

已知在 ΔABC 中, O BC 边的中点,连接 AO ,将 ΔAOC 绕点 O 顺时针方向旋转(旋转角为钝角),得到 ΔEOF ,连接 AE CF

(1)如图1,当 BAC = 90 ° AB = AC 时,则 AE CF 满足的数量关系是   

(2)如图2,当 BAC = 90 ° AB AC 时,(1)中的结论是否仍然成立?若成立,请写出证明过程;若不成立,请说明理由.

(3)如图3,延长 AO 到点 D ,使 OD = OA ,连接 DE ,当 AO = CF = 5 BC = 6 时,求 DE 的长.

来源:2021年广西贵港市中考数学试卷
  • 更新:2021-07-22
  • 题型:未知
  • 难度:未知

如图,在矩形 ABCD 中, BD 是对角线, AE BD ,垂足为 E ,连接 CE ,若 tan ADB = 1 2 ,则 tan DEC 的值是   

来源:2021年广西贵港市中考数学试卷
  • 更新:2021-07-22
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, ABC = 90 ° AB = 8 BC = 12 D AC 边上的一个动点,连接 BD E BD 上的一个动点,连接 AE CE ,当 ABD = BCE 时,线段 AE 的最小值是 (    )

A.

3

B.

4

C.

5

D.

6

来源:2021年广西贵港市中考数学试卷
  • 更新:2021-07-22
  • 题型:未知
  • 难度:未知

如图,在正方形 ABCD 中, E F 是对角线 AC 上的两点,且 EF = 2 AE = 2 CF ,连接 DE 并延长交 AB 于点 M ,连接 DF 并延长交 BC 于点 N ,连接 MN ,则 S ΔAMD S ΔMBN = (    )

A.

3 4

B.

2 3

C.

1

D.

1 2

来源:2021年广西贵港市中考数学试卷
  • 更新:2021-07-22
  • 题型:未知
  • 难度:未知

如图,在 Rt Δ ABC 中, A = 90 ° ,作 BC 的垂直平分线交 AC 于点 D ,延长 AC 至点 E ,使 CE = AB

(1)若 AE = 1 ,求 ΔABD 的周长;

(2)若 AD = 1 3 BD ,求 tan ABC 的值.

来源:2021年广东省中考数学试卷
  • 更新:2021-07-22
  • 题型:未知
  • 难度:未知

ΔABC 中, ABC = 90 ° AB = 2 BC = 3 .点 D 为平面上一个动点, ADB = 45 ° ,则线段 CD 长度的最小值为   

来源:2021年广东省中考数学试卷
  • 更新:2021-07-22
  • 题型:未知
  • 难度:未知

如图,等腰直角三角形 ABC 中, A = 90 ° BC = 4 .分别以点 B 、点 C 为圆心,线段 BC 长的一半为半径作圆弧,交 AB BC AC 于点 D E F ,则图中阴影部分的面积为   

来源:2021年广东省中考数学试卷
  • 更新:2021-07-22
  • 题型:未知
  • 难度:未知

问题解决:如图1,在矩形 ABCD 中,点 E F 分别在 AB BC 边上, DE = AF DE AF 于点 G

(1)求证:四边形 ABCD 是正方形;

(2)延长 CB 到点 H ,使得 BH = AE ,判断 ΔAHF 的形状,并说明理由.

类比迁移:如图2,在菱形 ABCD 中,点 E F 分别在 AB BC 边上, DE AF 相交于点 G DE = AF AED = 60 ° AE = 6 BF = 2 ,求 DE 的长.

来源:2021年甘肃省武威市中考数学试卷
  • 更新:2021-07-22
  • 题型:未知
  • 难度:未知

在《阿基米德全集》中的《引理集》中记录了古希腊数学家阿基米德提出的有关圆的一个引理.如图,已知 AB ̂ C 是弦 AB 上一点,请你根据以下步骤完成这个引理的作图过程.

(1)尺规作图(保留作图痕迹,不写作法);

①作线段 AC 的垂直平分线 DE ,分别交 AB ̂ 于点 D AC 于点 E ,连接 AD CD

②以点 D 为圆心, DA 长为半径作弧,交 AB ̂ 于点 F ( F A 两点不重合),连接 DF BD BF

(2)直接写出引理的结论:线段 BC BF 的数量关系.

来源:2021年甘肃省武威市中考数学试卷
  • 更新:2021-07-22
  • 题型:未知
  • 难度:未知

如图,在正方形 ABCD 中, E F 为边 AB 上的两个三等分点,点 A 关于 DE 的对称点为 A ' AA ' 的延长线交 BC 于点 G

(1)求证: DE / / A ' F

(2)求 GA ' B 的大小;

(3)求证: A ' C = 2 A ' B

来源:2021年福建省中考数学试卷
  • 更新:2021-07-22
  • 题型:未知
  • 难度:未知

如图,在 Rt Δ ABC 中, ACB = 90 ° .线段 EF 是由线段 AB 平移得到的,点 F 在边 BC 上, ΔEFD 是以 EF 为斜边的等腰直角三角形,且点 D 恰好在 AC 的延长线上.

(1)求证: ADE = DFC

(2)求证: CD = BF

来源:2021年福建省中考数学试卷
  • 更新:2021-07-22
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, D 是边 BC 上的点, DE AC DF AB ,垂足分别为 E F ,且 DE = DF CE = BF .求证: B = C

来源:2021年福建省中考数学试卷
  • 更新:2021-07-22
  • 题型:未知
  • 难度:未知

如图,在矩形 ABCD 中, AB = 4 AD = 5 ,点 E F 分别是边 AB BC 上的动点,点 E 不与 A B 重合,且 EF = AB G 是五边形 AEFCD 内满足 GE = GF EGF = 90 ° 的点.现给出以下结论:

GEB GFB 一定互补;

②点 G 到边 AB BC 的距离一定相等;

③点 G 到边 AD DC 的距离可能相等;

④点 G 到边 AB 的距离的最大值为 2 2

其中正确的是        .(写出所有正确结论的序号)

来源:2021年福建省中考数学试卷
  • 更新:2021-07-22
  • 题型:未知
  • 难度:未知

如图, AD ΔABC 的角平分线.若 B = 90 ° BD = 3 ,则点 D AC 的距离是   

来源:2021年福建省中考数学试卷
  • 更新:2021-07-22
  • 题型:未知
  • 难度:未知

初中数学三角形试题