如图,矩形 中,点 为 上一点, 为 的中点,且 .
(1)当 为 中点时,求证: ;
(2)当 时,求 的值;
(3)设 , ,作点 关于 的对称点 ,连接 , ,若点 到 的距离是 ,求 的值.
如图(1)放置两个全等的含有 角的直角三角板 与 ,若将三角板 向右以每秒1个单位长度的速度移动(点 与点 重合时移动终止),移动过程中始终保持点 、 、 、 在同一条直线上,如图(2), 与 、 分别交于点 、 , 与 交于点 ,其中 ,设三角板 移动时间为 秒.
(1)在移动过程中,试用含 的代数式表示 的面积;
(2)计算 等于多少时,两个三角板重叠部分的面积有最大值?最大值是多少?
如图1,已知四边形 是矩形,点 在 的延长线上, . 与 相交于点 ,与 相交于点 , .
(1)求证: ;
(2)若 ,求 的长;
(3)如图2,连接 ,求证: .
如图,在菱形 中, ,点 , , 分别在边 , 上, , 平分 ,点 是线段 上一动点(与点 不重合).
(1)求证: ;
(2)当 , 时.
求 周长的最小值;
②若点 是 的中点,是否存在直线 将 分成三角形和四边形两部分,其中三角形的面积与四边形的面积比为 .若存在,请求出 的值;若不存在,请说明理由.
如图,在正方形 中,对角线 与 相交于点 ,点 在 的延长线上,连接 ,点 是 的中点,连接 交 于点 ,连接 ,若 , .则下列结论:① ;② ;③ ;④ ;⑤点 到 的距离为 .其中正确的结论是
A. |
①②③④ |
B. |
①③④⑤ |
C. |
①②③⑤ |
D. |
①②④⑤ |
如图是一个由5张纸片拼成的平行四边形 ,相邻纸片之间互不重叠也无缝隙,其中两张等腰直角三角形纸片的面积都为 ,另两张直角三角形纸片的面积都为 ,中间一张矩形纸片 的面积为 , 与 相交于点 .当 , , , 的面积相等时,下列结论一定成立的是
A. |
|
B. |
|
C. |
|
D. |
|
如图,三角形纸片 , , ,点 为 中点,沿过点 的直线折叠,使点 与点 重合,折痕交 于点 .已知 ,则 的长是
A. |
|
B. |
3 |
C. |
|
D. |
|
如图,在矩形 中,对角线 与 相交于点 , ,对角线 所在的直线绕点 顺时针旋转角 ,所得的直线 分别交 , 于点 , .
(1)求证: ;
(2)当旋转角 为多少度时,四边形 为菱形?试说明理由.
如图,点 为 的重心,连接 , 并延长分别交 , 于点 , ,连接 ,若 , , ,则 的长度为
A.1.7B.1.8C.2.2D.2.4
如图,在正方形 中, , 是 边上的一点, 。将 沿 对折至 ,连接 ,则 的长是
A. |
|
B. |
|
C. |
3 |
D. |
|
如图,在 中, , .分别以点 , 为圆心,大于 的长为半径画弧,两弧交于 , 两点,直线 交 于点 ,连接 .以点 为圆心, 为半径画弧,交 延长线于点 ,连接 .若 ,则 的周长为 .
如图,在等边三角形 中,点 是边 上一定点,点 是直线 上一动点,以 为一边作等边三角形 ,连接 .
【问题解决】
如图1,若点 在边 上,求证: ;
【类比探究】
如图2,若点 在边 的延长线上,请探究线段 , 与 之间存在怎样的数量关系?并说明理由.
如图,已知点 , , , 在同一条直线上, , , .
(1)求证: .
(2)判断四边形 的形状,并证明.
量角器测角度时摆放的位置如图所示,在 中,射线 交边 于点 ,则 的度数为
A. B. C. D.