初中数学

如图,在边长为1的正方形 ABCD 中,动点 E F 分别在边 AB CD 上,将正方形 ABCD 沿直线 EF 折叠,使点 B 的对应点 M 始终落在边 AD 上(点 M 不与点 A D 重合),点 C 落在点 N 处, MN CD 交于点 P ,设 BE = x

(1)当 AM = 1 3 时,求 x 的值;

(2)随着点 M 在边 AD 上位置的变化, ΔPDM 的周长是否发生变化?如变化,请说明理由;如不变,请求出该定值;

(3)设四边形 BEFC 的面积为 S ,求 S x 之间的函数表达式,并求出 S 的最小值.

来源:2018年江苏省宿迁市中考数学试卷
  • 更新:2021-05-25
  • 题型:未知
  • 难度:未知

如图①,直线 l 表示一条东西走向的笔直公路,四边形 ABCD 是一块边长为100米的正方形草地,点 A D 在直线 l 上,小明从点 A 出发,沿公路 l 向西走了若干米后到达点 E 处,然后转身沿射线 EB 方向走到点 F 处,接着又改变方向沿射线 FC 方向走到公路 l 上的点 G 处,最后沿公路 l 回到点 A 处.设 AE = x 米(其中 x > 0 ) GA = y 米,已知 y x 之间的函数关系如图②所示,

(1)求图②中线段 MN 所在直线的函数表达式;

(2)试问小明从起点 A 出发直至最后回到点 A 处,所走过的路径(即 ΔEFG ) 是否可以是一个等腰三角形?如果可以,求出相应 x 的值;如果不可以,说明理由.

来源:2018年江苏省苏州市中考数学试卷
  • 更新:2021-05-25
  • 题型:未知
  • 难度:未知

在数学兴趣小组活动中,小亮进行数学探究活动. ΔABC 是边长为2的等边三角形, E AC 上一点,小亮以 BE 为边向 BE 的右侧作等边三角形 BEF ,连接 CF

(1)如图1,当点 E 在线段 AC 上时, EF BC 相交于点 D ,小亮发现有两个三角形全等,请你找出来,并证明.

(2)当点 E 在线段 AC 上运动时,点 F 也随着运动,若四边形 ABFC 的面积为 7 4 3 ,求 AE 的长.

(3)如图2,当点 E AC 的延长线上运动时, CF BE 相交于点 D ,请你探求 ΔECD 的面积 S 1 ΔDBF 的面积 S 2 之间的数量关系.并说明理由.

(4)如图2,当 ΔECD 的面积 S 1 = 3 6 时,求 AE 的长.

来源:2018年江苏省连云港市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

已知, ΔABC 中, B = C P BC 边上一点,作 CPE = BPF ,分别交边 AC AB 于点 E F

(1)若 CPE = C (如图 1 ) ,求证: PE + PF = AB

(2)若 CPE C ,过点 B CBD = CPE ,交 CA (或 CA 的延长线)于点 D .试猜想:线段 PE PF BD 之间的数量关系,并就 CPE > C 情形(如图 2 ) 说明理由.

(3)若点 F A 重合(如图 3 ) C = 27 ° ,且 PA = AE

①求 CPE 的度数;

②设 PB = a PA = b AB = c ,试证明: b = a 2 c 2 c

来源:2018年浙江省嘉兴市(舟山市)中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

我们定义:如果一个三角形一条边上的高等于这条边,那么这个三角形叫做“等高底”三角形,这条边叫做这个三角形的“等底”.

(1)概念理解:

如图1,在 ΔABC 中, AC = 6 BC = 3 ACB = 30 ° ,试判断 ΔABC 是否是”等高底”三角形,请说明理由.

(2)问题探究:

如图2, ΔABC 是“等高底”三角形, BC 是”等底”,作 ΔABC 关于 BC 所在直线的对称图形得到△ A ' BC ,连接 AA ' 交直线 BC 于点 D .若点 B 是△ AA ' C 的重心,求 AC BC 的值.

(3)应用拓展:

如图3,已知 l 1 / / l 2 l 1 l 2 之间的距离为2.“等高底” ΔABC 的“等底” BC 在直线 l 1 上,点 A 在直线 l 2 上,有一边的长是 BC 2 倍.将 ΔABC 绕点 C 按顺时针方向旋转 45 ° 得到△ A ' B ' C A ' C 所在直线交 l 2 于点 D .求 CD 的值.

来源:2018年浙江省嘉兴市(舟山市)中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

如图,在正方形 ABCD 中,点 G 在边 BC 上(不与点 B C 重合),连接 AG ,作 DE AG 于点 E BF AG 于点 F ,设 BG BC = k

(1)求证: AE = BF

(2)连接 BE DF ,设 EDF = α EBF = β .求证: tan α = k tan β

(3)设线段 AG 与对角线 BD 交于点 H ΔAHD 和四边形 CDHG 的面积分别为 S 1 S 2 ,求 S 2 S 1 的最大值.

来源:2018年浙江省杭州市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

如图,已知线段 AB = 2 MN AB 于点 M ,且 AM = BM P 是射线 MN 上一动点, E D 分别是 PA PB 的中点,过点 A M D 的圆与 BP 的另一交点 C (点 C 在线段 BD 上),连接 AC DE

(1)当 APB = 28 ° 时,求 B CM ̂ 的度数;

(2)求证: AC = AB

(3)在点 P 的运动过程中

①当 MP = 4 时,取四边形 ACDE 一边的两端点和线段 MP 上一点 Q ,若以这三点为顶点的三角形是直角三角形,且 Q 为锐角顶点,求所有满足条件的 MQ 的值;

②记 AP 与圆的另一个交点为 F ,将点 F 绕点 D 旋转 90 ° 得到点 G ,当点 G 恰好落在 MN 上时,连接 AG CG DG EG ,直接写出 ΔACG ΔDEG 的面积之比.

来源:2017年浙江省温州市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

在平面直角坐标系中,借助直角三角板可以找到一元二次方程的实数根.比如对于方程 x 2 5 x + 2 = 0 ,操作步骤是:

第一步:根据方程的系数特征,确定一对固定点 A ( 0 , 1 ) B ( 5 , 2 )

第二步:在坐标平面中移动一个直角三角板,使一条直角边恒过点 A ,另一条直角边恒过点 B

第三步:在移动过程中,当三角板的直角顶点落在 x 轴上点 C 处时,点 C 的横坐标 m 即为该方程的一个实数根(如图 1 )

第四步:调整三角板直角顶点的位置,当它落在 x 轴上另一点 D 处时,点 D 的横坐标 n 即为该方程的另一个实数根.

(1)在图2中,按照“第四步”的操作方法作出点 D (请保留作出点 D 时直角三角板两条直角边的痕迹);

(2)结合图1,请证明“第三步”操作得到的 m 就是方程 x 2 5 x + 2 = 0 的一个实数根;

(3)上述操作的关键是确定两个固定点的位置.若要以此方法找到一元二次方程 a x 2 + bx + c = 0 ( a 0 , b 2 4 ac 0 ) 的实数根,请你直接写出一对固定点的坐标;

(4)实际上,(3)中的固定点有无数对,一般地,当 m 1 n 1 m 2 n 2 a b c 之间满足怎样的关系时,点 P ( m 1 n 1 ) Q ( m 2 n 2 ) 就是符合要求的一对固定点?

来源:2017年浙江省台州市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

在直角坐标系中,过原点 O 及点 A ( 8 , 0 ) C ( 0 , 6 ) 作矩形 OABC 、连接 OB ,点 D OB 的中点,点 E 是线段 AB 上的动点,连接 DE ,作 DF DE ,交 OA 于点 F ,连接 EF .已知点 E A 点出发,以每秒1个单位长度的速度在线段 AB 上移动,设移动时间为 t 秒.

(1)如图1,当 t = 3 时,求 DF 的长.

(2)如图2,当点 E 在线段 AB 上移动的过程中, DEF 的大小是否发生变化?如果变化,请说明理由;如果不变,请求出 tan DEF 的值.

(3)连接 AD ,当 AD ΔDEF 分成的两部分的面积之比为 1 : 2 时,求相应的 t 的值.

来源:2017年浙江省衢州市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

有两个内角分别是它们对角的一半的四边形叫做半对角四边形.

(1)如图1,在半对角四边形 ABCD 中, B = 1 2 D C = 1 2 A ,求 B C 的度数之和;

(2)如图2,锐角 ΔABC 内接于 O ,若边 AB 上存在一点 D ,使得 BD = BO OBA 的平分线交 OA 于点 E ,连接 DE 并延长交 AC 于点 F AFE = 2 EAF .求证:四边形 DBCF 是半对角四边形;

(3)如图3,在(2)的条件下,过点 D DG OB 于点 H ,交 BC 于点 G ,当 DH = BG 时,求 ΔBGH ΔABC 的面积之比.

来源:2017年浙江省宁波市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

如图,在矩形 ABCD 中,点 E AD 上的一个动点,连接 BE ,作点 A 关于 BE 的对称点 F ,且点 F 落在矩形 ABCD 的内部,连接 AF BF EF ,过点 F GF AF AD 于点 G ,设 AD AE = n

(1)求证: AE = GE

(2)当点 F 落在 AC 上时,用含 n 的代数式表示 AD AB 的值;

(3)若 AD = 4 AB ,且以点 F C G 为顶点的三角形是直角三角形,求 n 的值.

来源:2017年浙江省丽水市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

如图1,已知 ABCD AB / / x 轴, AB = 6 ,点 A 的坐标为 ( 1 , 4 ) ,点 D 的坐标为 ( 3 , 4 ) ,点 B 在第四象限,点 P ABCD 边上的一个动点.

(1)若点 P 在边 BC 上, PD = CD ,求点 P 的坐标.

(2)若点 P 在边 AB AD 上,点 P 关于坐标轴对称的点 Q 落在直线 y = x 1 上,求点 P 的坐标.

(3)若点 P 在边 AB AD CD 上,点 G AD y 轴的交点,如图2,过点 P y 轴的平行线 PM ,过点 G x 轴的平行线 GM ,它们相交于点 M ,将 ΔPGM 沿直线 PG 翻折,当点 M 的对应点落在坐标轴上时,求点 P 的坐标.(直接写出答案)

来源:2017年浙江省金华市义乌市(绍兴市)中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

如图,已知 ΔABC 内接于 O ,点 C 在劣弧 AB 上(不与点 A B 重合),点 D 为弦 BC 的中点, DE BC DE AC 的延长线交于点 E ,射线 AO 与射线 EB 交于点 F ,与 O 交于点 G ,设 GAB = α ACB = β EAG + EBA = γ

(1)点点同学通过画图和测量得到以下近似数据:

α

30 °

40 °

50 °

60 °

β

120 °

130 °

140 °

150 °

γ

150 °

140 °

130 °

120 °

猜想: β 关于 α 的函数表达式, γ 关于 α 的函数表达式,并给出证明;

(2)若 γ = 135 ° CD = 3 ΔABE 的面积为 ΔABC 的面积的4倍,求 O 半径的长.

来源:2017年浙江省杭州市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

如图1,在直角坐标系 xoy 中,直线 l : y = kx + b x 轴, y 轴于点 E F ,点 B 的坐标是 ( 2 , 2 ) ,过点 B 分别作 x 轴、 y 轴的垂线,垂足为 A C ,点 D 是线段 CO 上的动点,以 BD 为对称轴,作与 ΔBCD 成轴对称的△ BC ' D

(1)当 CBD = 15 ° 时,求点 C ' 的坐标.

(2)当图1中的直线 l 经过点 A ,且 k = 3 3 时(如图 2 ) ,求点 D C O 的运动过程中,线段 BC ' 扫过的图形与 ΔOAF 重叠部分的面积.

(3)当图1中的直线 l 经过点 D C ' 时(如图 3 ) ,以 DE 为对称轴,作与 ΔDOE 成轴对称的△ DO ' E ,连接 O ' C O ' O ,问是否存在点 D ,使得△ DO ' E 与△ CO ' O 相似?若存在,求出 k b 的值;若不存在,请说明理由.

来源:2016年浙江省衢州市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中, O 为坐标原点,点 A 的坐标为 ( 5 , 0 ) ,菱形 OABC 的顶点 B C 都在第一象限, tan AOC = 4 3 ,将菱形绕点 A 按顺时针方向旋转角 α ( 0 ° < α < AOC ) 得到菱形 FADE (点 O 的对应点为点 F ) EF OC 交于点 G ,连接 AG

(1)求点 B 的坐标.

(2)当 OG = 4 时,求 AG 的长.

(3)求证: GA 平分 OGE

(4)连接 BD 并延长交 x 轴于点 P ,当点 P 的坐标为 ( 12 , 0 ) 时,求点 G 的坐标.

来源:2016年浙江省宁波市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

初中数学三角形解答题