如图,在中,,是的中点,与相切于点,交于点
(1)求证:是的切线;
(2)若,点是上一个动点(不与,两点重合),求的度数.
如图, 为 的直径, 为 的弦, ,且 .
(1)求证: 是 的切线;
(2)若 , ,求 的半径.
某校数学兴趣小组课外活动时,需要测量一个水塘的宽度,扎西设计了如下方案:如图所示,先在平地上取一点 ,从 点不经过水塘可以直接到达水塘两端的点 和点 ,连接 并延长到点 ,使 ,连接 并延长到点 ,使 .测量出 的长就是水塘两端 的距离,扎西设计的方案正确吗?若正确请写出证明过程;若不正确请说明理由.
已知,分别与相切于点,,,为上一点.
(Ⅰ)如图①,求的大小;
(Ⅱ)如图②,为的直径,与相交于点.若,求的大小.
在平面直角坐标系中,四边形是矩形,点,点,点.以点为中心,顺时针旋转矩形,得到矩形,点,,的对应点分别为,,.
(Ⅰ)如图①,当点落在边上时,求点的坐标;
(Ⅱ)如图②,当点落在线段上时,与交于点.
①求证;
②求点的坐标.
(Ⅲ)记为矩形对角线的交点,为的面积,求的取值范围(直接写出结果即可).
已知是的直径,是的切线,,交于点,是上一点,延长交于点.
(1)如图①,求和的大小;
(2)如图②,当时,求的大小.
在平面直角坐标系中, 为原点,点 ,点 ,把 绕点 逆时针旋转,得△ ,点 , 旋转后的对应点为 , ,记旋转角为 .
(Ⅰ)如图①,若 ,求 的长;
(Ⅱ)如图②,若 ,求点 的坐标;
(Ⅲ)在(Ⅱ)的条件下,边 上 的一点 旋转后的对应点为 ,当 取得最小值时,求点 的坐标(直接写出结果即可)
在 中, 为直径, 为 上一点.
(Ⅰ)如图1.过点 作 的切线,与 的延长线相交于点 ,若 ,求 的大小;
(Ⅱ)如图2, 为 上一点,且 经过 的中点 ,连接 并延长,与 的延长线相交于点 ,若 ,求 的大小.
综合与实践
动手操作:
第一步:如图1,正方形纸片沿对角线所在的直线折叠,展开铺平.在沿过点的直线折叠,使点,点都落在对角线上.此时,点与点重合,记为点,且点,点,点三点在同一条直线上,折痕分别为,.如图2.
第二步:再沿所在的直线折叠,与重合,得到图3.
第三步:在图3的基础上继续折叠,使点与点重合,如图4,展开铺平,连接,,,.如图5,图中的虚线为折痕.
问题解决:
(1)在图5中,的度数是 ,的值是 .
(2)在图5中,请判断四边形的形状,并说明理由;
(3)在不增加字母的条件下,请你以图中5中的字母表示的点为顶点,动手画出一个菱形(正方形除外),并写出这个菱形: .
综合与实践
问题情境:在数学活动课上,老师出示了这样一个问题:如图1,在矩形中,,是延长线上一点,且,连接,交于点,以为一边在的左下方作正方形,连接.试判断线段与的位置关系.
探究展示:勤奋小组发现,垂直平分,并展示了如下的证明方法:
证明:,.
,.
四边形是矩形,.
.(依据
,..
即是的边上的中线,
又,.(依据
垂直平分.
反思交流:
(1)①上述证明过程中的“依据1”“依据2”分别是指什么?
②试判断图1中的点是否在线段的垂直平分线上,请直接回答,不必证明;
(2)创新小组受到勤奋小组的启发,继续进行探究,如图2,连接,以为一边在的左下方作正方形,发现点在线段的垂直平分线上,请你给出证明;
探索发现:
(3)如图3,连接,以为一边在的右上方作正方形,可以发现点,点都在线段的垂直平分线上,除此之外,请观察矩形和正方形的顶点与边,你还能发现哪个顶点在哪条边的垂直平分线上,请写出一个你发现的结论,并加以证明.
综合与实践
背景阅读 早在三千多年前,我国周朝数学家商高就提出:将一根直尺折成一个直角,如果勾等于三,股等于四,那么弦就等于五,即“勾三、股四、弦五”.它被记载于我国古代著名数学著作《周髀算经》中,为了方便,在本题中,我们把三边的比为的三角形称为,4,型三角形,例如:三边长分别为9,12,15或,,的三角形就是,4,型三角形,用矩形纸片按下面的操作方法可以折出这种类型的三角形.
实践操作 如图1,在矩形纸片中,,.
第一步:如图2,将图1中的矩形纸片沿过点的直线折叠,使点落在上的点处,折痕为,再沿折叠,然后把纸片展平.
第二步:如图3,将图2中的矩形纸片再次折叠,使点与点重合,折痕为,然后展平,隐去.
第三步:如图4,将图3中的矩形纸片沿折叠,得到△,再沿折叠,折痕为,与折痕交于点,然后展平.
问题解决
(1)请在图2中证明四边形是正方形.
(2)请在图4中判断与的数量关系,并加以证明;
(3)请在图4中证明,4,型三角形;
探索发现
(4)在不添加字母的情况下,图4中还有哪些三角形是,4,型三角形?请找出并直接写出它们的名称.