初中数学

如图, Rt Δ ABC 中, ABC = 90 ° ,以点 C 为圆心, CB 为半径作 C D C 上一点,连接 AD CD AB = AD AC 平分 BAD

(1)求证: AD C 的切线;

(2)延长 AD BC 相交于点 E ,若 S ΔEDC = 2 S ΔABC ,求 tan BAC 的值.

来源:2021年江苏省连云港市中考数学试卷
  • 更新:2021-08-21
  • 题型:未知
  • 难度:未知

如图, B F C E 是直线 l 上的四点, AB / / DE AB = DE BF = CE

(1)求证: ΔABC ΔDEF

(2)将 ΔABC 沿直线 l 翻折得到△ A ' BC

①用直尺和圆规在图中作出△ A ' BC (保留作图痕迹,不要求写作法);

②连接 A ' D ,则直线 A ' D l 的位置关系是   

来源:2021年江苏省常州市中考数学试卷
  • 更新:2021-08-21
  • 题型:未知
  • 难度:未知

如图,点 D AB 上, E AC 上, AB = AC B = C ,求证: AD = AE

来源:2021年吉林省中考数学试卷
  • 更新:2021-08-21
  • 题型:未知
  • 难度:未知

将一物体(视为边长为 2 π 米的正方形 ABCD ) 从地面 PQ 上挪到货车车厢内.如图所示,刚开始点 B 与斜面 EF 上的点 E 重合,先将该物体绕点 B (E)按逆时针方向旋转至正方形 A 1 B C 1 D 1 的位置,再将其沿 EF 方向平移至正方形 A 2 B 2 C 2 D 2 的位置(此时点 B 2 与点 G 重合),最后将物体移到车厢平台面 MG 上.已知 MG / / PQ FBP = 30 ° ,过点 F FH MG 于点 H FH = 1 3 米, EF = 4 米.

(1)求线段 FG 的长度;

(2)求在此过程中点 A 运动至点 A 2 所经过的路程.

来源:2021年湖南省株洲市中考数学试卷
  • 更新:2021-08-21
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, AD BC ,垂足为 D BD = CD ,延长 BC E ,使得 CE = CA ,连接 AE

(1)求证: B = ACB

(2)若 AB = 5 AD = 4 ,求 ΔABE 的周长和面积.

来源:2021年湖南省长沙市中考数学试卷
  • 更新:2021-08-21
  • 题型:未知
  • 难度:未知

如图,在 Rt Δ AOB 中, ABO = 90 ° OAB = 30 ° ,以点 O 为圆心, OB 为半径的圆交 BO 的延长线于点 C ,过点 C OA 的平行线,交 O 于点 D ,连接 AD

(1)求证: AD O 的切线;

(2)若 OB = 2 ,求弧 CD 的长.

来源:2021年湖南省张家界市中考数学试卷
  • 更新:2021-08-21
  • 题型:未知
  • 难度:未知

如图,在矩形 ABCD 中,对角线 AC BD 相交于点 O AOB = 60 ° ,对角线 AC 所在的直线绕点 O 顺时针旋转角 α ( 0 ° < α < 120 ° ) ,所得的直线 l 分别交 AD BC 于点 E F

(1)求证: ΔAOE ΔCOF

(2)当旋转角 α 为多少度时,四边形 AFCE 为菱形?试说明理由.

来源:2021年湖南省张家界市中考数学试卷
  • 更新:2021-08-21
  • 题型:未知
  • 难度:未知

如图,已知点 A D C B 在同一条直线上, AD = BC AE = BF AE / / BF

(1)求证: ΔAEC ΔBFD

(2)判断四边形 DECF 的形状,并证明.

来源:2021年湖南省永州市中考数学试卷
  • 更新:2021-08-21
  • 题型:未知
  • 难度:未知

如图,在正方形 ABCD 中,对角线 AC BD 相交于点 O ,点 E F 是对角线 AC 上的两点,且 AE = CF .连接 DE DF BE BF

(1)证明: ΔADE ΔCBF

(2)若 AB = 4 2 AE = 2 ,求四边形 BEDF 的周长.

来源:2021年湖南省邵阳市中考数学试卷
  • 更新:2021-08-21
  • 题型:未知
  • 难度:未知

已知:如图,四边形 ABCD 为平行四边形,点 E A C F 在同一直线上, AE = CF

求证:(1) ΔADE ΔCBF

(2) ED / / BF

来源:2021年湖南省怀化市中考数学试卷
  • 更新:2021-08-16
  • 题型:未知
  • 难度:未知

如图, AB CD 于点 O ,在 ΔAOC ΔBOD 中,有下列三个条件:① OC = OD ,② AC = BD ,③ A = B .请你在上述三个条件中选择两个为条件,另一个能作为这两个条件推出来的结论,并证明你的结论(只要求写出一种正确的选法).

(1)你选的条件为     ,结论为   

(2)证明你的结论.

image.png

来源:2021年贵州省铜仁市中考数学试卷
  • 更新:2021-08-01
  • 题型:未知
  • 难度:未知

《淮南子 ? 天文训》中记载了一种确定东西方向的方法,大意是:日出时,在地面上点 A 处立一根杆,在地面上沿着杆的影子的方向取一点 B ,使 B A 两点间的距离为10步(步是古代的一种长度单位),在点 B 处立一根杆;日落时,在地面上沿着点 B 处的杆的影子的方向取一点 C ,使 C B 两点间的距离为10步,在点 C 处立一根杆.取 CA 的中点 D ,那么直线 DB 表示的方向为东西方向.

(1)上述方法中,杆在地面上的影子所在直线及点 A B C 的位置如图所示.使用直尺和圆规,在图中作 CA 的中点 D (保留作图痕迹);

(2)在如图中,确定了直线 DB 表示的方向为东西方向.根据南北方向与东西方向互相垂直,可以判断直线 CA 表示的方向为南北方向,完成如下证明.

证明:在 ΔABC 中, BA =     D CA 的中点,

CA DB (    ) (填推理的依据).

直线 DB 表示的方向为东西方向,

直线 CA 表示的方向为南北方向.

来源:2021年北京市中考数学试卷
  • 更新:2021-07-22
  • 题型:未知
  • 难度:未知

如图,在平行四边形 ABCD 中, AE CF 分别平分 BAD DCB ,交对角线 BD 于点EF

(1)若 BCF 60 ° ,求 ABC 的度数;

(2)求证: BE DF

来源:2020年重庆市中考数学试卷(b卷)
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图,在 ABCD 中, DE AC 于点O,交BC于点E EG EC GF AD DE于点F,连接 FC ,点H为线段 AO 上一点,连接 HD HF

(1)判断四边形 GECF 的形状,并说明理由;

(2)当 DHF HAD 时,求证: AH CH EC AD

来源:2020年甘肃省兰州市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图,在 Rt AOB 中, AOB 90 ° OA OB ,点C AB 的中点,以OC为半径作 O

(1)求证: AB O 的切线;

(2)若 OC 2 ,求 OA 的长.

来源:2020年甘肃省兰州市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

初中数学三角形解答题